Practice Questions from 11.1-11.4

1. Answer the following for the power series $\sum c_{n}(x-a)^{n}$. Complete the blanks.
a. The power series $\sum c_{n}(x-a)^{n}$ is centered at the value $x=$ \qquad .
b. Suppose the interval of convergence is all real numbers. Then the radius of convergence is $R=$ \qquad .
c. Suppose the interval of convergence is only the value $\boldsymbol{x}=\boldsymbol{a}$. Then the radius of convergence is $R=$ \qquad .
d. Suppose the interval of convergence is $|\boldsymbol{x}-\boldsymbol{a}|<\boldsymbol{b}$, i.e. $\boldsymbol{a}-\boldsymbol{b}<\boldsymbol{x}<\boldsymbol{a}+\boldsymbol{b}$.

Then the radius of convergence is $R=$ \qquad .
2. The interval of convergence of $\sum_{n=1}^{\infty}\left(\frac{x-4}{2}\right)^{n}$ is \square . Show work below. Hint: It is a geometric series.
3. Suppose we have the following

$$
\begin{aligned}
& f(34)=60, \\
& f^{\prime}(34)=43, \\
& f^{\prime \prime}(34)=22, \text { and } \\
& f^{\prime \prime \prime}(34)=30 .
\end{aligned}
$$

a. Write the third-order Taylor polynomial approximation to f at $x=34$ in expanded form. Simplify please.
$t(x)=$
b. True or False: The polynomial $t(x)$ is the tangent cubic to f at the value $x=34$. \qquad
4. Report the interval of convergence of $\sum_{n=0}^{\infty} n!x^{5 n}$. Select one.
A. $-1<x<1$
B. $-\frac{1}{\sqrt{5}}<x<\frac{1}{\sqrt{5}} \quad$ C. $-\sqrt[5]{5}<x<\sqrt[5]{5}$
D. $x=0$
E. $-\frac{1}{5}<x<\frac{1}{5} \quad$ F. $-\infty<x<\infty$
5. The interval of convergence of $\sum_{n=1}^{\infty} \frac{x^{3 n}}{n!}$ is $\square<x<\square$. Show work below.
6. Consider $\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{n}$
a. The radius of convergence is $R=$ \qquad . Show work below.
b. If x is equal to the left endpoint of the interval of convergence, the series $\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{n}$ will $\overline{\{\text { converge, diverge }\}}$.
c. If x is equal to the right endpoint of the interval of convergence, the series $\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{n}$ will \qquad .
d. State the reasons which justify your claims about the endpoints in parts \mathbf{b} and \mathbf{c}.
7. Consider $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{x^{n+11}}{n^{2}}\right)$
a. The radius of convergence is $R=$ \qquad . Show work below.
b. If x is equal to the left endpoint of the interval of convergence, the series $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{x^{n+11}}{n^{2}}\right)$ will $\frac{\text { \{converge, diverge\} }}{}$.
c. If x is equal to the right endpoint of the interval of convergence, the series $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{x^{n+11}}{n^{2}}\right)$ will $\left\{_{\{\text {converge, diverge }\}}\right.$.
d. State the reasons which justify your claims about the endpoints in parts \mathbf{b} and \mathbf{c}.

Fun Facts:
For all x we have $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \quad \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
For $-1<x<1$ we have $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\cdots$
For $-1<x \leq 1$ we have $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \quad$ For $-1 \leq x \leq 1$ we have $\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$
8. Complete: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\square$. The name of this series is called the \qquad series. TIP: Use a Fun Fact above.

> Write in the box an exact number or DNE or ∞ or $-\infty$.

9. Complete: $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\cdot=\square$. The name of this series is called the \qquad series.
10. a. In sigma notation the series $-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}-\cdots$. $=$ \square
b. Use one of the Fun Facts above to determine what function $f(x)$ the series $-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}-\cdots$. approximates.

c. Write the first four terms of the series in expanded form if $x=-1$. \square $-\ldots$

The left endpoint $x=-1$ \qquad in the interval of convergence. Explain your answer.
\{is, is not\}
Write in the box an exact number or DNE or ∞ or $-\infty$. Reason:

Simplified please.
Reason:
\qquad

d. Write the first four terms of the series in expanded form if $x=1$. \square The right endpoint $x=1$ \qquad in the interval of convergence. Explain your answer.
\{is, is not\}

Reason: \qquad
11. Write the first four nonzero terms of the series for $f(w)=10 \tan ^{-1}(2 w)$.
12. Write the first four nonzero terms of the series for $f(w)=\sin \left(w^{2}\right)$.
13. Write the first four nonzero terms of the series for $f(w)=e^{-w}$.
14. The term-by-term derivative of $f(x)=\sum_{n=0}^{\infty} 5 x^{n}=5+5 x+5 x^{2}+5 x^{3}+5 x^{4}+\cdots$ is the power series below.

b. The radius of convergence of $f^{\prime}(x)$ is $R=$ \qquad
c. If x is equal to the left endpoint of the interval of convergence, the series for $f^{\prime}(x)$ will \qquad . \{converge, diverge\}
d. If x is equal to the right endpoint of the interval of convergence, the series for $f^{\prime}(x)$ will \qquad .
e. Write the series for $f^{\prime}(x)$ in sigma notation.

$$
f^{\prime}(x)=\sum_{n=\square}^{\infty}(\square)
$$

f. When x is in the interval of convergence, we can write the series for $f^{\prime}(x)$ as what rational function?

g. Sketch a graph of $\sum_{n=0}^{\infty} 5 x^{n}=5+5 x+5 x^{2}+5 x^{3}+5 x^{4}+\cdots$ on its the interval of convergence.

