Practice Questions from 10.7-10.8 and 11.1-11.2

1. The Ratio Test and Root Test are based on the properties of convergence of
A. a p-series, $p \neq 1$.
B. the harmonic series
C. the alternating series D. a television series E. the world series. F. a geometric series
2. Which of these will help you determine if the series $\sum_{n=0}^{\infty} 2 e^{n}$ converges or diverges? Select all possible answers.
A. limit comparison test with a p-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series
C. alternating series test E. absolute convergence test (i.e., convergence of $\sum\left|a_{n}\right|$ implies convergence of $\sum a_{n}$)
D. integral test E. ratio test F. nth Term Test for Divergence
3. Which of these will help you determine if the series $\sum_{n=0}^{\infty} e^{-2 n}$ converges or diverges? Select all possible answers.
A. limit comparison test with a p-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series C. alternating series test E . absolute convergence test (i.e., convergence of $\sum\left|a_{n}\right|$ implies convergence of $\sum a_{n}$)
D. integral test E. ratio test F. nth Term Test for Divergence
4. Which of these will help you determine if the series $\sum_{n=1}^{\infty}\left(\frac{(-1)^{n+1}}{n^{2}}\right)$ converges or diverges? Select all possible answers.
A. limit comparison test with a p-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series
C. alternating series test E. absolute convergence test (i.e., convergence of $\sum\left|a_{n}\right|$ implies convergence of $\sum a_{n}$)
D. ratio test E. nth Term Test for Divergence
5. Which of these will help you determine if the series $\sum_{n=1}^{\infty}\left(\frac{(-1)^{n+1}}{\sqrt{n}}\right)$ converges or diverges? Select all possible answers.
A. limit comparison test with a p-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series C. alternating series test E . absolute convergence test (i.e., convergence of $\sum\left|a_{n}\right|$ implies convergence of $\sum a_{n}$)
D. ratio test E. nth Term Test for Divergence
6. Which of these will help you determine if the series $\sum_{n=1}^{\infty}\left(\frac{n+2}{n!}\right)$ converges or diverges? Select all possible answers.
A. limit comparison test with a p-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series C. alternating series test E. absolute convergence test (i.e., convergence of $\sum\left|a_{n}\right|$ implies convergence of $\sum a_{n}$)
D. integral test E. ratio test F. nth Term Test for Divergence
7. Use the Ratio Test for each.
a. The series $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n!}$ will $\underbrace{}_{\text {\{converge, diverge }\}}$ by the Ratio Test because $\lim _{n \rightarrow \infty}$

Write in the box a
simplified expression involving n.

Write in the box an exact number or DNE or ∞ or $-\infty$.
b. The series $\sum_{n=1}^{\infty} \frac{4^{n}}{n^{800}}$ will $\frac{\text { \{converge, diverge\} }}{}$ by the Ratio Test because $\lim _{n \rightarrow \infty}$.

Write in the box an exact number or DNE or ∞ or $-\infty$.
8. Use the Root Test for each.
a. The series $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{8 n^{4}}{7 n^{4}+n+5}\right)^{n}$
will \qquad by the Root Test because $\lim _{n \rightarrow \infty}$

Write in the box a simplified expression involving n.

Write in the box an exact number or DNE or ∞ or $-\infty$.
b. The series $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{2 n}{3 n+2}\right)^{n}$ will \qquad by the Root Test because $\lim _{n \rightarrow \infty}$ Write in the box
simplified expression involving n.

Write in the box an exact number or DNE or ∞ or $-\infty$.
b. $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{n+1}{n}\right)^{n^{2}}$ will \{converge, diverge\}
by the Root Test because $\lim _{n \rightarrow \infty}$
 an exact number or DNE or ∞ or $-\infty$.
9. Consider the series $\sum_{n=1}^{\infty}\left(1+\frac{a}{n}\right)^{18 n}$ for some real number a.
a. The series will \qquad -
b. Circle the best answer to determine part a.
A. It is a p-series.
B. It is a geometric series
C. Use the Ratio Test
D. Use the Root Test E. Use the nth Term Test for Divergence
c. Explain more fully below how part \mathbf{b} justifies part \mathbf{a}.
10. Answer the following for the power series $\sum c_{n}(x-a)^{n}$. Complete the blanks.
a. The power series $\sum c_{n}(x-a)^{n}$ is centered at the value $x=$ \qquad -.
b. Suppose the interval of convergence is all real numbers. Then the radius of convergence is $R=$ \qquad .
c. Suppose the interval of convergence is only the value $\boldsymbol{x}=\boldsymbol{a}$. Then the radius of convergence is $R=$ \qquad .
d. Suppose the interval of convergence is $|\boldsymbol{x}-\boldsymbol{a}|<\boldsymbol{b}$, i.e. $\boldsymbol{a}-\boldsymbol{b}<\boldsymbol{x}<\boldsymbol{a}+\boldsymbol{b}$. Then the radius of convergence is $R=$ \qquad .
11. The interval of convergence of $\sum_{n=1}^{\infty}\left(\frac{x-4}{2}\right)^{n}$ is
 Show work below.

Hint: It is a geometric series.
12. Report the interval of convergence of $\sum_{n=0}^{\infty} n!x^{5 n}$. Select one.
A. $-1<x<1$
B. $-\frac{1}{\sqrt{5}}<x<\frac{1}{\sqrt{5}} \quad$ C. $-\sqrt[5]{5}<x<\sqrt[5]{5}$
D. $x=0$
E. $-\frac{1}{5}<x<\frac{1}{5} \quad$ F. $-\infty<x<\infty$
13. The interval of convergence of $\sum_{n=1}^{\infty} \frac{x^{3 n}}{n!}$ is $\square<x<\square$. Show work below.
14. Consider $\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{n}$
a. The radius of convergence is $R=$ \qquad . Show work below.
b. If x is equal to the left endpoint of the interval of convergence, the series $\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{n}$ will \qquad
c. If x is equal to the right endpoint of the interval of convergence, the series $\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{n}$ will \qquad .
d. State the reasons which justify your claims about the endpoints in parts \mathbf{b} and \mathbf{c}.
15. Consider $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{x^{n+11}}{n^{2}}\right)$
a. The radius of convergence is $R=$ \qquad . Show work below.
b. If x is equal to the left endpoint of the interval of convergence, the series $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{x^{n+11}}{n^{2}}\right)$ will \qquad
c. If x is equal to the right endpoint of the interval of convergence, the series $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{x^{n+11}}{n^{2}}\right)$ will $\frac{\{\text { converge, diverge }\}}{}$.
d. State the reasons which justify your claims about the endpoints in parts \mathbf{b} and \mathbf{c}.

Fun Facts:

For all x we have $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \quad \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
For $-1<x<1$ we have $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\cdots$
For $-1<x \leq 1$ we have $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \quad$ For $-1 \leq x \leq 1$ we have $\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$
16. Complete: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdot \cdot=\square$. The name of this series is called the \qquad series. TIP: Use a Fun Fact above.

Write in the box an exact number or Be specific please. DNE or ∞ or $-\infty$.
17. Complete: $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\cdot \cdot \square$. The name of this series is called the \qquad series.

Write in the box an exact number or

DNE or ∞ or $-\infty$.
18. a. In sigma notation the series $-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}-\cdots=\sum^{\infty}$
b. Use one of the Fun Facts above to determine what function $f(x)$ the series $-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}-\cdots$. approximates.

c. Write the first four terms of the series in expanded form if $x=-1$.

The left endpoint $x=-1$ \qquad in the interval of convergence. Explain your answer.

Reason: \qquad Simplified please.
d. Write the first four terms of the series in expanded form if $x=1$. \square $-\ldots$

The right endpoint $x=1$ \qquad in the interval of convergence. Explain your answer.

Reason: \qquad
19. Consider function $f(x)=10 \tan ^{-1}(2 w)$. Write the first four terms of the series.

Simplified please.
\square
20. Consider function $f(w)=\sin \left(w^{2}\right)$. Write the first four terms of the series. $\sin \left(w^{2}\right)=$ \square

21. Consider function $f(w)=e^{-w}$. Write the first four terms of the series.

22. The term-by-term derivative of $f(x)=\sum_{n=0}^{\infty} 5 x^{n}=5+5 x+5 x^{2}+5 x^{3}+5 x^{4}+\cdots$ is the power series below.
a. Write the first four nonzero terms of the series for $f^{\prime}(x)$.

Simplified please

b. The radius of convergence of $f^{\prime}(x)$ is $R=$ \qquad
c. If x is equal to the left endpoint of the interval of convergence, the series for $f^{\prime}(x)$ will \qquad .
\{converge, diverge\}
d. If x is equal to the right endpoint of the interval of convergence, the series for $f^{\prime}(x)$ will \qquad -
e. Write the series for $f^{\prime}(x)$ in sigma notation.

f. When x is in the interval of convergence, we can write the series for $f^{\prime}(x)$ as what rational function?

