Practice Questions from 10.7-10.8 and 11.1-11.2

- The Ratio Test and Root Test are based on the properties of convergence of
 A. a p-series, p≠1.
 B. the harmonic series
 C. the alternating series
 D. a television series
 E. the world series. F. a geometric series
- 2. Which of these will help you determine if the series $\sum_{n=0}^{\infty} 2e^n$ converges or diverges? Select all possible answers.

A. limit comparison test with a *p*-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series

C. alternating series test E. absolute convergence test (i.e., convergence of $\sum |a_n|$ implies convergence of $\sum a_n$)

D. integral test E. ratio test F. nth Term Test for Divergence

- Which of these will help you determine if the series ∑_{n=0}[∞] e⁻²ⁿ converges or diverges? Select all possible answers.
 A. limit comparison test with a *p*-series, *p*≠1. B. limit comparison test with the harmonic series C. a geometric series C. alternating series test E. absolute convergence test (i.e., convergence of ∑|a_n| implies convergence of ∑a_n)
 D. integral test E. ratio test F. *n*th Term Test for Divergence
- 4. Which of these will help you determine if the series $\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n^2} \right)$ converges or diverges? Select all possible answers. A. limit comparison test with a *p*-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series C. alternating series test E. absolute convergence test (i.e., convergence of $\sum |a_n|$ implies convergence of $\sum a_n$) D. ratio test E. *n*th Term Test for Divergence
- 5. Which of these will help you determine if the series $\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{\sqrt{n}}\right)$ converges or diverges? Select all possible answers. A. limit comparison test with a *p*-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series C. alternating series test E. absolute convergence test (i.e., convergence of $\sum |a_n|$ implies convergence of $\sum a_n$) D. ratio test E. *n*th Term Test for Divergence
- 6. Which of these will help you determine if the series $\sum_{n=1}^{\infty} \left(\frac{n+2}{n!}\right)$ converges or diverges? Select all possible answers. A. limit comparison test with a *p*-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series C. alternating series test E. absolute convergence test (i.e., convergence of $\sum |a_n|$ implies convergence of $\sum a_n$) D. integral test E. ratio test F. *n*th Term Test for Divergence

9. Consider the series
$$\sum_{n=1}^{\infty} \left(1 + \frac{a}{n}\right)^{15n}$$
 for some real number **a**.

b. Circle the best answer to determine part **a**.

A. It is a p-series. B. It is a geometric series C. Use the Ratio Test D. Use the Root Test E. Use the nth Term Test for Divergence

c. Explain more fully below how part b justifies part a.

10. Answer the following for the power series $\sum c_n (x-a)^n$. Complete the blanks.

- **a.** The power series $\sum c_n (x-a)^n$ is centered at the value x =_____.
- **b.** Suppose the interval of convergence is **all real numbers**. Then the radius of convergence is R =_____.
- **c.** Suppose the interval of convergence is only the value x = a. Then the radius of convergence is R =_____
- **d.** Suppose the interval of convergence is |x a| < b, i.e. a b < x < a + b. Then the radius of convergence is R =_____.

11. The interval of convergence of
$$\sum_{n=1}^{\infty} \left(\frac{x-4}{2}\right)^n$$
 is $|| < x < ||$. Show work below.

Hint: It is a geometric series.

12. Report the interval of convergence of $\sum_{n=0}^{\infty} n! x^{5n}$. Select one.

A.
$$-1 < x < 1$$
 B. $-\frac{1}{\sqrt{5}} < x < \frac{1}{\sqrt{5}}$ C. $-\sqrt[5]{5} < x < \sqrt[5]{5}$ D. $x = 0$ E. $-\frac{1}{5} < x < \frac{1}{5}$ F. $-\infty < x < \infty$

13. The interval of convergence of $\sum_{n=1}^{\infty} \frac{x^{3n}}{n!}$ is || < x < ||. Show work below.

14. Consider $\sum_{n=1}^{\infty} \frac{(3x)^n}{n}$

a. The radius of convergence is R =_____. Show work below.

- **b.** If x is equal to the **left endpoint** of the interval of convergence, the series $\sum_{n=1}^{\infty} \frac{(3x)^n}{n}$ will $\frac{1}{\{\text{converge, diverge}\}}$.
- d. State the reasons which justify your claims about the endpoints in parts b and c.
- 15. Consider $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{x^{n+11}}{n^2} \right)$
 - **a**. The radius of convergence is R =_____. Show work below.

b. If x is equal to the **left endpoint** of the interval of convergence, the series $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{x^{n+11}}{n^2} \right)$ will _______.

c. If x is equal to the **right endpoint** of the interval of convergence, the series $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{x^{n+11}}{n^2} \right) \text{will}_{\{\text{converge, diverge}\}}.$

d. State the reasons which justify your claims about the endpoints in parts b and c.

Fun Facts:

For all x we have
$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{2}}{3!} + \frac{x^{4}}{4!} + \cdots$$
 sin $x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{2}}{7!} + \cdots$ cos $x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{4}}{6!} + \cdots$
For $-1 < x < 1$ we have $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{3} + x^{4} + \cdots$
For $-1 < x < 1$ we have $\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{2}}{3} - \frac{x^{4}}{4} + \cdots$
For $-1 < x < 1$ we have $\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{2}}{3} - \frac{x^{4}}{4} + \cdots$
For $-1 < x < 1$ we have $\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{2}}{3} - \frac{x^{4}}{4} + \cdots$
For $-1 \le x \le 1$ we have $\tan^{-1}x = x - \frac{x^{2}}{3} + \frac{x^{2}}{5} - \frac{x^{2}}{7} + \cdots$
16. Complete: $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots =$
The name of this series is called the series.
TP: Use a Fun Fact above.
The name of this series is called the series.
TP: Use a Fun Fact above.
The name of this series is called the series.
TP: Use a Fun Fact above.
The name of this series is called the series.
TP: Use a Fun Fact above.
The name of this series is called the series.
TP: Use a Fun Fact above.
The name of this series is called the series.
TP: Use a Fun Fact above.
The name of this series is called the series.
TP: Use a Fun Fact above.
The name of this series $x = x - \frac{x^{2}}{2} - \frac{x^{2}}{3} - \frac{x^{4}}{4} - \frac{x^{2}}{5} - \cdots$ approximates.
 $f(x) =$
The radius of convergence is $R =$
The name of the series $x = x - \frac{x^{2}}{2} - \frac{x^{2}}{3} - \frac{x^{4}}{4} - \frac{x^{2}}{5} - \cdots$ approximates.
 $f(x) =$
The radius of convergence is $R =$
The name of the series in expanded form if $x = -1$.
The right endpoint $x = -1$ in the interval of convergence. Explain your answer.
Reason:
The right endpoint $x = 1$ in the interval of convergence. Explain your answer.
Reason:
The right endpoint $x = 1$ in the interval of convergence. Explain your answer.
Reason:
The right endpoint $x = 1$ in the interval of convergence. Explain your answer.
Reason:
The right endpoint $x = 1$ in the interval of convergence. Expla

22. The term-by-term derivative of $f(x) = \sum_{n=0}^{\infty} 5x^n = 5 + 5x + 5x^2 + 5x^3 + 5x^4 + \cdots$ is the power series below.

- **b.** The radius of convergence of f'(x) is R =_____
- c.

- If x is equal to the **right endpoint** of the interval of convergence, the series for f'(x) will_ d. {converge, diverge}
- Write the series for f'(x) in sigma notation. e.

$$f'(x) = \sum_{n=1}^{\infty} \left(\boxed{ \boxed{ } \end{aligned} \right)$$

When x is in the interval of convergence, we can write the series for f'(x) as what rational function? f.

