Practice Questions from 10.7-10.8

1. The Ratio Test and Root Test are based on the properties of convergence of
A. a p-series, $p \neq 1$.
B. the harmonic series
C. the alternating series D. a television series E. the world series. F. a geometric series
2. Which of these will help you determine if the series $\sum_{n=0}^{\infty} 2 e^{n}$ converges or diverges? Select all possible answers.
A. limit comparison test with a p-series, $p \neq 1$. B. limit comparison test with the harmonic series C . a geometric series D. alternating series test \quad E. absolute convergence test (i.e., convergence of $\sum\left|a_{n}\right|$ implies convergence of $\sum a_{n}$)
E. integral test \quad F. ratio test \quad G. nth Term Test for Divergence
3. Which of these will help you determine if the series $\sum_{n=0}^{\infty} e^{-2 n}$ converges or diverges? Select all possible answers.
A. limit comparison test with a p-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series D. alternating series test \quad E. absolute convergence test (i.e., convergence of $\sum\left|a_{n}\right|$ implies convergence of $\sum a_{n}$)
E. integral test F. ratio test G. nth Term Test for Divergence
4. Which of these will help you determine if the series $\sum_{n=1}^{\infty}\left(\frac{(-1)^{n+1}}{n^{2}}\right)$ converges or diverges? Select all possible answers.
A. limit comparison test with a p-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series D. alternating series test \quad E. absolute convergence test (i.e., convergence of $\sum\left|a_{n}\right|$ implies convergence of $\sum a_{n}$)
E. ratio test F. nth Term Test for Divergence
5. Which of these will help you determine if the series $\sum_{n=1}^{\infty}\left(\frac{(-1)^{n+1}}{\sqrt{n}}\right)$ converges or diverges? Select all possible answers. A. limit comparison test with a p-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series D. alternating series test \quad E. absolute convergence test (i.e., convergence of $\sum\left|a_{n}\right|$ implies convergence of $\sum a_{n}$)
E. ratio test F. nth Term Test for Divergence
6. Which of these will help you determine if the series $\sum_{n=1}^{\infty}\left(\frac{n+2}{n!}\right)$ converges or diverges? Select all possible answers.
A. limit comparison test with a p-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series
D. alternating series test \quad E. absolute convergence test (i.e., convergence of $\sum\left|a_{n}\right|$ implies convergence of $\sum a_{n}$)
E. integral test \quad F. ratio test \quad G. nth Term Test for Divergence
7. Use the Ratio Test for each.
a. The series $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n!}$ will $\prod_{\{\text {converge, diverge }\}}$ by the Ratio Test because $\lim _{n \rightarrow \infty}$

Write in the box a
simplified expression involving n.
an exact number or

$$
\text { DNE or } \infty \text { or }-\infty
$$

b. The series $\sum_{n=1}^{\infty} \frac{4^{n}}{n^{800}}$ will $\underbrace{}_{\text {\{converge, diverge \}}}$

Write in the box a simplified expression involving n.

Write in the box an exact number or DNE or ∞ or $-\infty$.
8. Use the Root Test for each.
a. The series $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{8 n^{4}}{7 n^{4}+n+5}\right)^{n}$
will \qquad by the Root Test because $\lim _{n \rightarrow \infty}$
 simplified expression involving n.

Write in the box an exact number or DNE or ∞ or $-\infty$.
b. The series $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{2 n}{3 n+2}\right)^{n}$ will \qquad by the Root Test because $\lim _{n \rightarrow \infty}$.

Write in the box a simplified expression involving n.

Write in the box an exact number or DNE or ∞ or $-\infty$.
c. $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{n+1}{n}\right)^{n^{2}}$ will $\underbrace{}_{\{\text {converge, diverge \}}}$
 an exact number or DNE or ∞ or $-\infty$.
9. Consider the series $\sum_{n=1}^{\infty}\left(1+\frac{a}{n}\right)^{18 n}$ for some real number a.
a. The series will \qquad -
b. Circle the best answer to determine part \mathbf{a}.
A. It is a p-series. B. It is a geometric series
C. Use the Ratio Test
D. Use the Root Test
E. Use the nth Term Test for Divergence
c. Explain more fully below how part \mathbf{b} justifies part \mathbf{a}.
10. Consider the series $\sum_{n=1}^{\infty}(-2)^{n}$
a. The series will \qquad .
b. Which of these will help you determine if the series $\sum_{n=1}^{\infty}(-2)^{n}$ converges or diverges? Select all possible answers.
A. It is a p-series. B. It is a geometric series
C. Use the Ratio Test
D. Use the Root Test
E. Use the nth Term Test for Divergence
c. Explain more fully below how part \mathbf{b} justifies part \mathbf{a} for each of your choices.
11. Consider the series $\sum_{n=1}^{\infty} n(-0.5)^{n}$
a. The series will \qquad .
b. Justify your claim in part a.

