Practice Questions from Section 10.4

1. For what values of p does $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ converge? \qquad For what values of r does $\sum_{k=1}^{\infty} a r^{k-1}$ converge?
2. Shown to the right is a plot of the terms a_{n} and the nth partial sums S_{n} for the series $\sum_{k=1}^{\infty}\left(1-\frac{1}{k}\right)^{k}$.
a. Circle the correct choice: We know that $\lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)^{k} \frac{}{\{\text { does, does not }\}}$ equal 0 .

This means by the nth Term Test for Divergence that
the series $\sum_{k=1}^{\infty}\left(1-\frac{1}{k}\right)^{k}$ \qquad

b. The plot shows $\lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)^{k} \approx 0.3678794411714423215955237701614608674458111310317678345078368016974614957448998034$ What is the exact value of this number? $\lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)^{k}=\square$ Write in the box an exact
hown to the right is a plot of the terms a_{n} and the nth partial sums S_{n} for the series $\sum_{k=1}^{\infty}\left(1-\frac{1}{10}\right)^{k}$.
3. Shown to the right is a plot of the terms a_{n} and the nth partial sums S_{n} for the series
a. Circle the correct choice: We know that $\lim _{k \rightarrow \infty}\left(1-\frac{1}{10}\right)^{k} \frac{}{\{\text { does, does not }\}}$ equal 0 ,

This means by the nth Term Test for Divergence that
the series $\sum_{k=1}^{\infty}\left(1-\frac{1}{10}\right)^{k}$ \qquad

b. The series $\sum_{k=1}^{\infty}\left(1-\frac{1}{10}\right)^{k}=\square$ Write in the box an exact number or DNE or ∞ or $-\infty$.
4. Suppose $\sum_{k=1}^{\infty} a_{k}$ is any series. Circle True or False. If False, give a counterexample which shows it is False. If True, leave blank.
a. True False If $\lim _{k \rightarrow \infty} a_{k}=0$, then $\sum_{k=1}^{\infty} a_{k}$ converges.
$\begin{array}{ll}\text { b. True False } & \text { If the limit of the sequence of partial sums } S_{n} \text { exists, i.e., } \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=L<\infty \text {, then } \sum_{k=1}^{\infty} a_{k}=L \text {, } \\ \text { where } L \text { is some finite number. }\end{array}$
\qquad
c. True False If the limit of the sequence a_{k} exists, i.e. $\lim _{k \rightarrow \infty} a_{k}=L$, then the series $\sum_{k=1}^{\infty} a_{k}$ converges.
d. True False If $\sum_{k=1}^{\infty} a_{k}$ converges, then the sequence of partial sums S_{n} approaches 0 , i.e, $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=0$.
5. Determine whether $\sum_{n=1}^{\infty} \frac{560 n^{4} \cdot 4^{n}+11^{n}}{n^{4} 11^{n}}$ converges or diverges by answering the questions below.
a. Circle the correct answer below.
A. The series is the sum of a geometric series with $|r|<1$ and the harmonic series.
B. The series is the sum of a geometric series with $|r|<1$ and a p-series with $p<1$.
C. The series is the sum of a geometric series with $|r|<1$ and a p-series with $p>1$.
D. The series is the sum of a geometric series with $|r|>1$ and the harmonic series.
E. The series is the sum of a geometric series with $|r|>1$ and a p-series with $p<1$.
F. The series is the sum of a geometric series with $|r|>1$ and a p-series with $p>1$.
b. Write $\sum_{n=1}^{\infty} \frac{560 n^{4} \cdot 4^{n}+11^{n}}{n^{4} 11^{n}}$ as the sum of a geometric series and a p-series (or harmonic series).
c. Circle the correct choice and fill in the blanks: The geometric series has $r=$ \qquad and will \qquad and the p-series (or harmonic series) has $p=$ \qquad and will \qquad -
Thus the series $\sum_{n=1}^{\infty} \frac{560 n^{4} \cdot 4^{n}+11^{n}}{n^{4} 11^{n}}$ will \qquad .
6. Because $f(x)=\frac{24}{1+x^{2}}$ is $\frac{\text { for } x \geq 1 \text { we can use the Integral Test to show } \sum_{n=1}^{\infty} \frac{24}{1+n^{2}} \text { converges or diverges. } \text {. } \text {. }{ }^{\text {increasing, decreasing\} }} \text {. }}{}$.
a. The series will \qquad because $\int_{1}^{\infty} \frac{24}{1+x^{2}} d x=\square$. Write in the box an exact number or DNE or ∞ or $-\infty$.
b. Show work below using correct limit notation:
$\int_{1}^{\infty} \frac{24}{1+x^{2}} d x=$
c. Shown below is a plot of a_{n} and S_{n} for the series $\sum_{n=1}^{\infty} \frac{24}{1+n^{2}}$, as well as the area representing $\int_{1}^{\infty} \frac{24}{1+x^{2}} d x$.

Circle the best choice:
From the graphs we expect that $\sum_{n=1}^{\infty} \frac{24}{1+n^{2}} \frac{}{\{=,<,>\}} \int_{1}^{\infty} \frac{24}{1+x^{2}} d x$

