Practice Questions from Section 10.1-10.3

1. a. For what values of r does the sequence $\left\{r^{n}\right\}$ converge? \qquad
b. For what values of r does the sequence $\left\{r^{n}\right\}$ diverge? \qquad
2. Complete: $\lim _{n \rightarrow \infty}(-1)^{n+1}(2)^{n}=$ \square Write in the box an exact number or DNE or ∞ or $-\infty$.
3. Complete: $\lim _{n \rightarrow \infty}\left(1+\frac{\ln \sqrt{7}}{n}\right)^{n}=\square$ Write in the box an exact number or DNE or ∞ or $-\infty$.
4. Consider the sequence given by $\left\{a_{n}\right\}_{n=1}^{\infty}: \frac{7}{32}, \frac{7^{2}}{34}, \frac{7^{3}}{36}, \frac{7^{4}}{38}, \frac{7^{5}}{40}, \ldots$

Find a formula for the nth term of the sequence in terms of $n . \quad\left\{a_{n}\right\}_{n=1}^{\infty}=$
5. a. Write the next two terms of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$: $\pi,-\pi, \pi,-\pi$, \qquad
b. Find a formula for the nth term of the sequence in terms of $n . \quad\left\{a_{n}\right\}_{n=1}^{\infty}=$ \square
c. Write a recurrence relation that generates the above sequence.

$$
a_{n+1}=\square, a_{1}=\square \text {, for } n=1,2,3, \ldots
$$

6. Consider the sequence given by the recurrence relation $a_{n+1}=2+\frac{3}{a_{n}}, a_{1}=1$
a. The sequence converges to a limit L. Give the exact value of $L . \quad L=\square$
b. Convergence occurs when $a_{n+1}=a_{n}$. Use this fact to write an equation that involves L.

Equation: \qquad
c. Solve the equation in part b to justify your claim in part a. You will get two solutions. Reject the negative value of L.
7. Complete: $\sum_{k=0}^{\infty} 400(1.10)^{k}=\square$ Write in the box an exact number or DNE or ∞ or $-\infty$.
8. Complete: $\sum_{k=0}^{\infty} \frac{282}{13^{k-1}}=$ \square Write in the box an exact number or DNE or ∞ or $-\infty$.

If $\sum_{k=0}^{\infty} \frac{282}{13^{k-1}}$ were written as $\sum_{k=0}^{\infty} a r^{k}$, report a and $r . a=$ \qquad , $r=$ \qquad .
9. The series $\sum_{k=0}^{\infty} a r^{k}$ converges to 5. If $a=9.5$, what is the value of r ? Complete: $\sum_{k=0}^{\infty} 9.5(\square)^{k}=5$ Show work.
10. The series $\sum_{k=0}^{\infty} a r^{k}$ converges to 5. If $r=\frac{1}{25}$, what is the value of a ? Complete: $\sum_{k=0}^{\infty} \square\left(\frac{1}{25}\right)^{k}=5$ Show work.
11. Consider the sequence $\sqrt{42}, \sqrt{42-\sqrt{42}}, \sqrt{42-\sqrt{42-\sqrt{42}}}, \sqrt{42-\sqrt{42-\sqrt{42-\sqrt{42}}}, \ldots .}$
a. Write a recurrence relation that generates the above sequence.

$$
a_{n+1}=\square, a_{1}=\square, \text { for } n=1,2,3, \ldots
$$

b. The sequence converges to a limit L. Give the exact value of $L . \quad L=$ \square
c. Convergence occurs when $a_{n+1}=a_{n}$. Use this fact to rewrite the above recurrence relation into an equation that involves L.

Equation: \qquad
d. Solve the equation part \mathbf{c} to justify your claim in part \mathbf{b}.
12. For what values of r does the series $\sum_{k=0}^{\infty} a(r)^{k}$ converge?
13. Consider the function $f(x)=\sum_{k=0}^{\infty} 9\left(\frac{x-4}{2}\right)^{k}$
a. Evaluate $f(3)$. Show work.
 Write in the box an exact number or DNE or ∞ or $-\infty$.
b. For what values of x does $f(x)$ converge? Show work.

14. Complete: $\frac{2 \cdot 124}{125}+\frac{2 \cdot 124^{2}}{125^{2}}+\frac{2 \cdot 124^{3}}{125^{3}}+\ldots=\square$ Write in the box an exact number or DNE or ∞ or $-\infty$.
15. Consider the sequence given by the recurrence relation $a_{n+1}=0.95 a_{n}+8.2, a_{1}=8.2$
a. The sequence converges to a limit L. Give the exact value of $L . \quad L=$
b. Convergence occurs when $a_{n+1}=a_{n}$. Use this fact to rewrite the above recurrence relation into an equation that involves L.

Equation: \qquad
c. Solve the equation in part \mathbf{b} to justify your claim in part a.
d. Complete the boxes below to write the next two terms of the series in long form.

Each subsequent term involves a numerical expression containing 0.95 and 8.2.

e. Without using sigma notation, write an expression that gives the nth partial sum of this series $S_{n}=$ i.e., the sum of the series of n terms.
f. Enter your expression from part \mathbf{e} in your grapher and scroll a table to find the value of n for which the sum first surpasses 150 .

The number of terms $n=$ \square
16. Once per year Richie Rich deposits an amount of $\$ 400$ in an account which pays 10% interest per year, compounded annually, with additional deposits of $\$ 400$ continually made at the end of the year.

If B_{n} is the balance in the account, in dollars, immediately after Richie makes the nth deposit, then we can write $B_{1}=\$ 400$.
a. Complete the table to find the following. Report to the nearest $\$ 0.01$.
i) the balance, B_{2}, of the account on the day immediately after the second deposit.
ii) the balance, B_{3}, of the account on the day immediately after the third deposit.
iii) the balance, B_{4}, of the account on the day immediately after the fourth deposit.

n, \# Deposits	B_{n}
1	$\$ 400$
2	
3	
4	

b. Suppose Richie makes 422 deposits. Which is true about the sum B_{422} ?

The balance, B_{422}, of the account on the day immediately after the 422 nd deposit is exactly
A. $\mathrm{B}_{422}=400 \cdot 10^{422}+400 \cdot 10^{421}+\ldots+400 \cdot 10^{2}+400 \cdot 10+400$
B. $B_{422}=400 \cdot 1.10^{423}+400 \cdot 1.10^{422}+\ldots+400 \cdot 1.10^{2}+400 \cdot 1.10+400$
C. $B_{422}=400 \cdot 10^{423}+400 \cdot 10^{422}+\ldots+400 \cdot 10^{2}+400 \cdot 10+400$
D. $B_{422}=400 \cdot 1.10^{422}+400 \cdot 1.10^{421}+\ldots+400 \cdot 1.10^{2}+400 \cdot 1.10+400$
E. $B_{422}=400 \cdot 1.10^{421}+400 \cdot 1.10^{420}+\ldots+400 \cdot 1.10^{2}+400 \cdot 1.10+400$
F. $B_{422}=400 \cdot 10^{421}+400 \cdot 10^{420}+\ldots+400 \cdot 10^{2}+400 \cdot 10+400$
c. The balance, B_{422}, of the account on the day immediately after the 422 nd deposit is approximately
A. $\mathrm{B}_{422} \approx \$ 1291712354137103000000$
B. $\mathrm{B}_{422} \approx \$ 1067530871187688000000$
C. $\mathrm{B}_{422} \approx \$ 1174283958306457000000$
D. $\mathrm{B}_{422} \approx \$ 1188774622351958700000$
E. $\quad \mathrm{B}_{422} \approx \$ 14490664045501680000$
F. The value of B_{422} can not be computed.

