1. Recall the area from $\theta=\alpha$ to $\theta=\beta$ inside a polar graph is $\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta$

Find the exact area of the region inside one leaf of the 5-leaved rose $r=5 \cos 5 \theta$.
You can use the FNINT command, but provide an exact area.

b. (+1 Bonus) What is the exact area, in terms of π ? Show work for credit.
3. The arc length from $\theta=0$ to $\theta=11$ of a polar spiral $r=6 \theta^{2}$ is given by $\int_{0}^{11} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$. Calculate the arc length correct to the nearest whole number.
You can use the FNINT command. Round to the nearest whole number.

4. The ceiling of a building is an ellipse with the dimensions shown (dimension feet). A person standing at c units from the y-axis that marks the center of the ellipse is able to hear the whispers of those standing the same distance on the other side of the y-axis. Assume both the person listening and those who are speaking are in the same vertical plane.
a. Write the formula of an ellipse with $\mathrm{RUN}=25$ and RISE $=24$.

Your formula should be for a full ellipse, not the semi-ellipse shown.

b. What is c ? Report a positive value.
5. Consider the conic section. $\frac{y^{2}}{25}-\frac{x^{2}}{36}=1$.
a. Select which of these looks most like the graph?
A.

B.

C.

D.

b. Report the vertices.

Report the focal points as exact values: \qquad
If the conic section is a hyperbola, report the asymptotes. Otherwise leave blank. \qquad
6. A satellite dish is in the shape of a parabolic surface. Signals coming from a satellite strike the surface of the dish and are reflected to the focus, where the receiver is located. The satellite dish has a diameter of 14 feet and a depth of 6.25 feet.
a. Report the equation of the parabola. \qquad

b. How far from the base of the dish should the receiver be placed?
7. The vertices of a hyperbola centered at the origin are at the points $(6,0)$ and $(-6,0)$. Its asymptotes are $y= \pm \frac{1}{2} x$. Which of these is its equation?
A. $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$
B. $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$
C. $\frac{x^{2}}{2}-\frac{y^{2}}{1}=1$
D. $\frac{x^{2}}{36}-\frac{y^{2}}{9}=1$
E. $\frac{x^{2}}{6}-\frac{y^{2}}{3}=1$
F. $\frac{x^{2}}{36}-\frac{y^{2}}{18}=1$
G. None of these

