Practice Questions from Appendix C Complex Numbers

- 1. a. Plot and label the complex numbers.
 - $z_{1} = 5 5i$ $z_{2} = -3i$ $z_{3} = 2\sqrt{2}e^{i3\pi/4}$ $z_{4} = 4e^{7\pi i}$

b. Write z_1 and z_2 in exponential form $re^{i\theta}$, where r and θ are exact real numbers (and θ is in radians). Hint: Part (a) may help. (There are many correct answers for θ : however

(There are many correct answers for θ ; however,

report exact **radians** please.)

 $z_1 = 5 - 5i$ r =

$$\theta =$$
_____ (Radians!)

Exponential form $re^{i\theta}$ of z_1 is _____

- $z_2 = -3i$ r =
 - $\theta =$ _____ (Radians!)

Exponential form $re^{i\theta}$ of z_2 is _____

c. Write z_3 and z_4 in rectangular form a + bi, where a and b are real numbers.

2.a. Write $(2e^{i\pi/3})^4$ in the exponential form $re^{i\theta}$, where θ is exact and in radians.

Exponential form $re^{i\theta}$ of $(2e^{i\pi/3})^4$ is _____

b. Write $(2e^{i\pi/3})^4$ in rectangular form a + bi, using exact values.

- **3.** Consider the complex number i^{37027} .
 - **a.** A student uses a calculator to try to write the number in rectangular form a + bi, where a and b are real numbers. See the screen below. What should the exact answer really be? Report the exact answer in rectangular form a + bi:

	37027		<u> </u>
i ³⁷⁰²⁷	$i^{5/02/} =$	+	·i
2.377⊑-10-i			

b. When trying to write the number in polar form $re^{i\theta}$ where *r* and θ are real numbers, a student sees the screen below. What is the exact radian measure of the angle θ on the screen? (It involves π .)

- **c.** Report the location of i^{37027} in the complex plane. A. the positive real axis
 - B. the positive imaginary axis
 - C. the negative real axis
 - D. the negative imaginary axis

- 4. If the complex number z is represented by a vector, describe how to construct the vector u which is the complex number z multiplied by the number $re^{i\theta}$, i.e., $u = z \cdot re^{i\theta}$.
- 5. Report all the fourth roots of the number -1 and sketch them on the complex plane. Write them in the form $rcis\theta$ (using radians) and in rectangular form a + bi (exact values please).
- 6. Report all the fourth roots of the number -64i and sketch them on the complex plane. Write them in the form $rcis\theta$ (using degrees) and in rectangular form a + bi (exact values please).
- 7. Report all the third roots of the number 8i and sketch them on the complex plane. Write them in the form $rcis\theta$ (using radians) and in rectangular form a + bi (exact values please).
- 8. Consider the complex geometric series $f(z) = \sum_{k=0}^{\infty} 50z^k = 50 + 50z + 50z^2 + 50z^3 + \dots$ which converges

on |z| < 1. Report the value of $f\left(\frac{3i}{4}\right) = \sum_{k=0}^{\infty} 50\left(\frac{3i}{4}\right)^k$.

a. We separate even powers of $\frac{3i}{4}$ and odd powers of $\frac{3i}{4}$.

$$f\left(\frac{3i}{4}\right) = \sum_{k=0}^{\infty} 50\left(\frac{3i}{4}\right)^{k} = 50\left(1 + \left(\frac{3i}{4}\right)^{2} + \left(\frac{3i}{4}\right)^{4} + \left(\frac{3i}{4}\right)^{6} + \dots\right) + 50\left(\left(\frac{3i}{4}\right)^{1} + \left(\frac{3i}{4}\right)^{3} + \left(\frac{3i}{4}\right)^{5} + \left(\frac{3i}{4}\right)^{7} + \dots\right)$$

First simplify powers of *i*.

Then combine real parts in the first row and imaginary parts in the second row.

Then factor out 50 in the first row and $50 \cdot \frac{3i}{4}$ in the second row. Enter **real** numbers in each box.

You can write the real numbers as powers of $\frac{3}{4}$.

$$f\left(\frac{3i}{4}\right) = 50\left(1 + \boxed{ + \boxed{ + \boxed{ + \boxed{ + \cdots}}} + 50 \cdot \frac{3i}{4}\left(1 + \boxed{ + \boxed{ + \cdots}} + 1 + \cdots\right)}\right)$$

b. The geometric series $1 + \left(\frac{3i}{4}\right)^2 + \left(\frac{3i}{4}\right)^4 + \left(\frac{3i}{4}\right)^6 + \cdots$ has $a = 1$ and $r = \boxed{ and sum equal to \boxed{ \cdots }}$.
The geometric series here has $a = 1$ and $r = \boxed{ and sum equal to \boxed{ \cdots }}$.
c. Combining, we have $f\left(\frac{3i}{4}\right) = \sum_{k=0}^{\infty} 50\left(\frac{3i}{4}\right)^k = \boxed{ \cdots } + \boxed{ i (Insert integers in the boxes.)}$