## Practice Questions from Appendix C Complex Numbers

1. a. Plot and label the complex numbers.

$$
\begin{aligned}
& z_{1}=5-5 i \\
& z_{2}=-3 i \\
& z_{3}=2 \sqrt{2} e^{i 3 \pi / 4} \\
& z_{4}=4 e^{7 \pi i}
\end{aligned}
$$



2.a. Write $\left(2 e^{i \pi / 3}\right)^{4}$ in the exponential form $r e^{i \theta}$, where $\theta$ is exact and in radians.
$\qquad$ (Radians!)

Exponential form $r e^{i \theta}$ of $\left(2 e^{i \pi / 3}\right)^{4}$ is $\qquad$
b. Write $\left(2 e^{i \pi / 3}\right)^{4}$ in rectangular form $a+b i$, using exact values.

3. Consider the complex number $i^{37027}$.
a. A student uses a calculator to try to write the number in rectangular form $a+b i$, where $a$ and $b$ are real numbers. See the screen below. What should the exact answer really be?
Report the exact answer in rectangular form $a+b i$ :

| $i^{37202 i}$ |  |
| :---: | :---: |
|  |  |

$$
i^{3727}=\square+\square \cdot i
$$

b. When trying to write the number in polar form $r e^{i \theta}$ where $r$ and $\theta$ are real numbers, a student sees the screen below. What is the exact radian measure of the angle $\theta$ on the screen? (It involves $\pi$.)

c. Report the location of $i^{37027}$ in the complex plane.
A. the positive real axis
B. the positive imaginary axis
C. the negative real axis
D. the negative imaginary axis
4. If the complex number $z$ is represented by a vector, describe how to construct the vector $u$ which is the complex number $z$ multiplied by the number $r e^{i \theta}$, i.e, $u=z \cdot r e^{i \theta}$.
5. Report all the fourth roots of the number -1 and sketch them on the complex plane. Write them in the form $r$ cis $\theta$ (using radians) and in rectangular form $a+b i$ (exact values please).
6. Report all the fourth roots of the number $-64 i$ and sketch them on the complex plane. Write them in the form $r$ cis $\theta$ (using degrees) and in rectangular form $a+b i$ (exact values please).
7. Report all the third roots of the number $8 i$ and sketch them on the complex plane. Write them in the form $r$ cis $\theta$ (using radians) and in rectangular form $a+b i$ (exact values please).
8. Consider the complex geometric series $f(z)=\sum_{k=0}^{\infty} 50 z^{k}=50+50 z+50 z^{2}+50 z^{3}+\ldots$ which converges on $|z|<1$. Report the value of $f\left(\frac{3 i}{4}\right)=\sum_{k=0}^{\infty} 50\left(\frac{3 i}{4}\right)^{k}$.
a. We separate even powers of $\frac{3 i}{4}$ and odd powers of $\frac{3 i}{4}$.

$$
f\left(\frac{3 i}{4}\right)=\sum_{k=0}^{\infty} 50\left(\frac{3 i}{4}\right)^{k}=50\left(1+\left(\frac{3 i}{4}\right)^{2}+\left(\frac{3 i}{4}\right)^{4}+\left(\frac{3 i}{4}\right)^{6}+\ldots\right)+50\left(\left(\frac{3 i}{4}\right)^{1}+\left(\frac{3 i}{4}\right)^{3}+\left(\frac{3 i}{4}\right)^{5}+\left(\frac{3 i}{4}\right)^{7}+\ldots\right)
$$

First simplify powers of $\boldsymbol{i}$.
Then combine real parts in the first row and imaginary parts in the second row.
Then factor out 50 in the first row and $50 \cdot \frac{3 i}{4}$ in the second row. Enter real numbers in each box.
You can write the real numbers as powers of $\frac{3}{4}$.

c. Combining, we have $f\left(\frac{3 i}{4}\right)=\sum_{k=0}^{\infty} 50\left(\frac{3 i}{4}\right)^{k}=\square i \quad$ (Insert integers in the boxes.)

