Practice Questions from 10.6-10.8

- - c. Give a reason for your claim in part b.
- **2.** Each alternating series below converges by the Alternating Series Test (AST). Determine if the convergence is conditional or absolute.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 7n}{4n^3 - 3}$$
 will converge $\frac{1}{\{absolutely, conditionally\}}$ because
the series $\sum_{n=1}^{\infty} \frac{7n}{4n^3 - 3}$ will $\frac{1}{\{converge, diverge\}}}$ by the $\frac{1}{\{Comparison Test, Limit Comparison Test\}}}$ with k

Provide the details of your claim below.

Provide the details of your claim below.

3. Report the two conditions for an alternating series $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (-1)^{n+1} a_n$ to converge, where a_n is positive for all n.

i.

ii.

- 4. Give an example of any kind of divergent alternating series. Hint: Think about your answer to Question 3.
- 5. Give an example of an alternating series with the property that its *n*th term approaches 0 but it still diverges. There are many correct answers. Hint: Think about your answer to Question 3. You may write it in long form (expanded form) or use sigma notation, but use correct notation.
- 6. The Ratio Test and Root Test are based on the properties of convergence of
 A. a *p*-series, *p*≠1. B. the harmonic series C. the alternating series D. a television series E. the world series. F. a geometric series
- 7. Which of these will help you determine if the series ∑_{n=0}[∞] 2eⁿ converges or diverges? Select all possible answers.
 A. limit comparison test with a *p*-series, *p*≠1. B. limit comparison test with the harmonic series C. a geometric series D. alternating series test E. absolute convergence test (i.e., convergence of ∑|a_n| implies convergence of ∑a_n)
 E. integral test F. ratio test G. *n*th Term Test for Divergence
- 8. Which of these will help you determine if the series ∑_{n=0}[∞] e⁻²ⁿ converges or diverges? Select all possible answers.
 A. limit comparison test with a *p*-series, *p*≠1. B. limit comparison test with the harmonic series C. a geometric series D. alternating series test E. absolute convergence test (i.e., convergence of ∑|a_n| implies convergence of ∑a_n)
 E. integral test F. ratio test G. *n*th Term Test for Divergence
- 9. Which of these will help you determine if the series $\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n^2}\right)$ converges or diverges? Select all possible answers. A. limit comparison test with a *p*-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series D. alternating series test E. absolute convergence test (i.e., convergence of $\sum |a_n|$ implies convergence of $\sum a_n$) E. ratio test F. *n*th Term Test for Divergence
- 10. Which of these will help you determine if the series $\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{\sqrt{n}}\right)$ converges or diverges? Select all possible answers. A. limit comparison test with a *p*-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series D. alternating series test E. absolute convergence test (i.e., convergence of $\sum |a_n|$ implies convergence of $\sum a_n$) E. ratio test F. *n*th Term Test for Divergence
- 11. Which of these will help you determine if the series $\sum_{n=1}^{\infty} \left(\frac{n+2}{n!}\right)$ converges or diverges? Select all possible answers. A. limit comparison test with a *p*-series, $p \neq 1$. B. limit comparison test with the harmonic series C. a geometric series D. alternating series test E. absolute convergence test (i.e., convergence of $\sum |a_n|$ implies convergence of $\sum a_n$)

E. integral test F. ratio test G. nth Term Test for Divergence

b. Circle the best answer to determine part **a**. A. It is a *p*-series. B. It is a geometric series C. Use the Ratio Test D. Use the Root Test E. Use the *n*th Term Test for Divergence

- c. Explain more fully below how part b justifies part a.
- **10.** Consider the series $\sum_{n=1}^{\infty} (-2)^n$ **a.** The series will ______{{converge, diverge}}.

- **b.** Which of these will help you determine if the series $\sum_{n=1}^{\infty} (-2)^n$ converges or diverges? Select all possible answers. A. It is a *p*-series. B. It is a geometric series C. Use the Ratio Test D. Use the Root Test
 - E. Use the *n*th Term Test for Divergence
- c. Explain more fully below how part b justifies part a for each of your choices.

11. Consider the series
$$\sum_{n=1}^{\infty} n(-0.5)^n$$

- a.
- **b.** Justify your claim in part a.