Area of a Polar Rose

Use the area formula $\int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta$ to find the area of one petal of the rose $r = 8 \sin 11\theta$ shown to the right. Hint: The first petal starts and ends when $r = f(\theta) = 8 \sin 11\theta = 0$. The graph of $r = 8 \sin 11\theta$ has _____ complete cycles in the interval $0 \le \theta \le 2\pi$.

8

-8

1. To find the integration limits, we can find values $\theta = \alpha$ and $\theta = \beta$ for which $r = 8\sin 11\theta = 0$, since this will be where the first petal starts and ends. The graph starts at $\alpha = 0$. Find β for which the graph of r = 9 $\sin 11\theta = 0$.

 β = _____. (Report β as an exact value involving π .)

TIP: The dashed line in the above graph is the polar equation $\theta = \beta$. You can enter in your polar grapher $r = 9 \sin 11\theta$ and $\theta \min = 0$ and $\theta \max = \beta$ to check that you have sketched only the first petal.

2. The exact area is $\int_0^\beta \frac{1}{2} r^2 d\theta =$ (Write as a multiple of π . Use FNINT)

Arc Length of a Polar Curve

 Recall from Section 12.2 that to convert from polar to Cartesian coordinates we use the relations

We now answer the arc length question for polar curves: Given the polar equation $r = f(\theta)$, what is the length of the corresponding curve for $\alpha \le \theta \le \beta$ (assuming the curve does not retrace itself on this interval)? The key idea is to express the polar equation as a set of parametric equations in Cartesian coordinates and then use the arc length formula for parametric equations derived in Section 12.1. Letting θ play the role of a parameter and using $r = f(\theta)$, parametric equations for the polar curve are

$$x = r \cos \theta = f(\theta) \cos \theta$$
 and $y = r \sin \theta = f(\theta) \sin \theta$.

where $\alpha \leq \theta \leq \beta$. The arc length formula in terms of the parameter θ is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta,$$

121

where

$$\frac{dx}{d\theta} = f'(\theta)\cos\theta - f(\theta)\sin\theta$$
 and $\frac{dy}{d\theta} = f'(\theta)\sin\theta + f(\theta)\cos\theta$.

When substituted into the arc length formula and simplified, the result is a new arc length integral (Exercise 84).

1. The arc length from $\theta = 0$ to $\theta = 10.9$ of the polar spiral $r = \theta^2$ shown is given by $\int_0^{10.9} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$

Calculate the arc length correct to the nearest whole number. You can use the FNINT command. Round to the nearest whole number.

2. The arc length from $\theta = 0$ to $\theta = 2\pi$ of the cardioid $r = 4 - 4\sin\theta$ shown is given by $\int_0^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$ Calculate the arc length. You can use the FNINT command.

