Area of a Polar Rose

Use the area formula $\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta$ to find the area of one petal of the rose $r=8 \sin 11 \theta$ shown to the right. Hint: The first petal starts and ends when $r=f(\theta)=8 \sin 11 \theta=0$.

The graph of $r=8 \sin 11 \theta$ has \qquad complete cycles in the interval $0 \leq \theta \leq 2 \pi$.

1. To find the integration limits, we can find values $\theta=\alpha$ and $\theta=\beta$ for which $r=8 \sin 11 \theta=0$, since this will be where the first petal starts and ends. The graph starts at $\alpha=0$. Find β for which the graph of $r=9$ $\sin 11 \theta=0$.

$$
\beta=\ldots \text {. (Report } \beta \text { as an exact value involving } \pi \text {.) }
$$

TIP: The dashed line in the above graph is the polar equation $\theta=\beta$. You can enter in your polar grapher $r=9 \sin 11 \theta$ and $\theta \min =0$ and $\theta \max =\beta$ to check that you have sketched only the first petal.
2. The exact area is $\int_{0}^{\beta} \frac{1}{2} r^{2} d \theta=$ \qquad (Write as a multiple of π. Use FNINT)

Arc Length of a Polar Curve

We now answer the arc length question for polar curves: Given the polar equation $r=f(\theta)$, what is the length of the corresponding curve for $\alpha \leq \theta \leq \beta$ (assuming the curve does not retrace itself on this interval)? The key idea is to express the polar equation as a set of parametric equations in Cartesian coordinates and then use the arc length formula for parametric equations derived in Section 12.1. Letting θ play the role of a parameter and using $r=f(\theta)$, parametric equations for the polar curve are

$$
x=r \cos \theta=f(\theta) \cos \theta \quad \text { and } \quad y=r \sin \theta=f(\theta) \sin \theta
$$

where $\alpha \leq \theta \leq \beta$. The arc length formula in terms of the parameter θ is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta
$$

where

$$
\frac{d x}{d \theta}=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \quad \text { and } \quad \frac{d y}{d \theta}=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta
$$

When substituted into the arc length formula and simplified, the result is a new arc length integral (Exercise 84).

Arc Length of a Polar Curve

Let f have a continuous derivative on the interval $[\alpha, \beta]$. The arc length of the polar curve $r=f(\theta)$ on $[\alpha, \beta]$ is

$$
L=\int_{\alpha}^{\beta} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta .
$$

1. The arc length from $\theta=0$ to $\theta=10.9$ of the polar spiral $r=\theta^{2}$ shown is given by $\int_{0}^{10.9} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$

Calculate the arc length correct to the nearest whole number.
You can use the FNINT command. Round to the nearest whole number.

2. The arc length from $\theta=0$ to $\theta=2 \pi$ of the cardioid $r=4-4 \sin \theta$ shown is given by $\int_{0}^{2 \pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$

Calculate the arc length. You can use the FNINT command.

