1. a First use the polar grid to find r and θ , which are not unique.

A.
$$r = 5$$
, $\theta = \pi/6$ and $x =$, $y =$
B. $r = 4$, $\theta = \pi/3$ and $x =$, $y =$
C. $r = 3$, $\theta = \pi/2$ and $x =$, $y =$
D. $r = 2$, $\theta = 5\pi/6$ and $x =$, $y =$
E. $r = 5$, $\theta = \pi$ and $x =$, $y =$
F. $r = 5$, $\theta = 5\pi/4$ and $x =$, $y =$
G. $r = 4$, $\theta = 3\pi/2$ and $x =$, $y =$
H. $r = 3$, $\theta = 5\pi/3$ and $x =$, $y =$
I. $r = 4$, $\theta = 0$ and $x =$, $y =$

Then stretch the unit circle to find exact values of x and y.

$$r = \frac{1}{2} \cdot \frac{1}{\sin \theta}$$
 Divide both sides by 2

$$r\sin\theta = \frac{1}{2}$$

Multiply both sides by $\sin \theta$ Goal: Create $r\sin \theta$ to replace it with y

$$y = \frac{1}{2}$$

Check with grapher. It is a horizontal line.

For θ please choose from 0, $\pi/6$, $\pi/4$, $\pi/3$, $\pi/2$, $2\pi/3$, $3\pi/4$, $5\pi/6$, π , $7\pi/6$, $5\pi/4$, $4\pi/3$, $3\pi/2$, $5\pi/3$, $7\pi/4$, or $11\pi/6$

$$x^2 - xy = y$$

Graph in a standard window. Set θ step = 0.1

c.
$$r = \frac{1}{\cos \theta + \sin \theta}$$

 $r\cos\theta + r\sin\theta = 1$ Goal: Create $r\cos\theta$ and $r\sin\theta$

$$x + y = 1$$

 $r \cot \theta + r^2 \cos \theta = 2 \csc \theta$ d.

r

r

$$\cos \theta + r^{2}\cos \theta \sin \theta = 2$$

$$\cos \theta + r\cos \theta r\sin \theta = 2$$

$$x + x \cdot y = 2$$

$$x \cdot y = 2 - x$$

$$y = \frac{2 - x}{x}$$
 or $y = \frac{2}{x} - 1$

NORMAL FLOAT AUTO REAL RADIAN MP

Plot1 Plot2 Plot3

■Nr1目 √tan(θ) cos(θ) **N**n2**⊟**-n1

It is implicit in *r* so we can't use a polar grapher. Use function mode and graph in a standard window.

 $x \cdot y + 3y = 3x$ y(x+3) = 3x

e.

f.

$$r^{2} = \frac{1}{\cos^{2}\theta} \cdot \frac{\sin \theta}{\cos \theta}$$
$$r^{2} \cos^{2}\theta \cos \theta = \sin \theta$$
$$r^{2} \cos^{2}\theta r \cos \theta = r \sin \theta$$
$$x^{2} \cdot x = y$$
$$y = x^{3}$$

Clear fractions. Make $r\cos\theta$ Multiply all terms by rMake $r\cos\theta$ and $r\sin\theta$

h.
$$r = \frac{2\csc\theta}{\cot\theta + r\cos\theta}$$

 $r = \frac{1}{\sin\theta} \cdot \frac{2}{\cot\theta + r\cos\theta}$ Rewrite $\csc\theta$ as the reciprocal of $\sin\theta$.
 $1 = \frac{1}{r\sin\theta} \cdot \frac{2}{\cot\theta + r\cos\theta}$ Divide by $1/r$
 $1 = \frac{1}{r\sin\theta} \cdot \frac{2}{\cot\theta + r\cos\theta}$ Replace $r\sin\theta$ with $y, r\cos\theta$ with $x, and \cot\theta$ with x/y
 $1 = \frac{2}{y \cdot \frac{x}{y} + y \cdot x}$ Replace $r\sin\theta$ with $y, r\cos\theta$ with $x, and \cot\theta$ with x/y
 $1 = \frac{2}{y \cdot \frac{x}{y} + y \cdot x}$ Distribute. One out.
 $1 = \frac{2}{x + yx}$ Clear fractions
 $x + yx = 2$ Isolate the term containing y Divide both sides by x .
 $y = \boxed{\frac{2 - x}{x}}$ or $y = \boxed{\frac{2}{x - 1}}$ or $y = \boxed{\frac{2}{x - 1}}$

3. Given the Cartesian equation in terms of x and y, write the polar equation in terms of r and θ . Your equation should begin with "r =" NORMAL FLOAT AUTO REAL RADIAN MP

Divide both sides by *r*.

a.
$$x^2 + y^2 = 6x - 4y$$

$$r^2 = 6r\cos\theta - 4r\sin\theta$$

$$r = 6\cos\theta - 4\sin\theta$$

b.
$$x^{2}(x^{2}+y^{2}) = 16y^{2}$$

 $(x^{2}+y^{2}) = \frac{16y^{2}}{x^{2}}$

$$r^2 = 16\tan^2\theta$$
$$r = 4\tan\theta$$

Take square roots of both sides.

c.
$$y = 3 - 2x$$

$$r\sin \theta = 3 - 2r\cos \theta$$
$$r\sin \theta + 2r\cos \theta = 3$$
$$r(\sin \theta + 2r\cos \theta) = 3$$
$$r(\sin \theta + 2r\cos \theta) = 3$$
$$r = \frac{3}{2\cos \theta + \sin \theta}$$

b. $r = 6 - 5\cos\theta$

-5

 2π

6. Use the cool fact that the area from $\theta = \alpha$ to $\theta = \beta$ inside a polar graph is $\int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta$

a. Find the exact area of the region inside one leaf of the 5-leaved rose $r = 5\cos 5\theta$ You can use the FNINT command, but provide an exact area.

Solve when $r = 5\cos 5\theta = 0$. The smallest negative value is the solution to

$$5\theta = -\frac{\pi}{2}.$$

Divide both sides by 5: $\theta = -\frac{\pi}{10}$

The smallest positive value is the solution to

$$5\theta = \frac{\pi}{2}$$

Divide both sides by 5: $\theta = \frac{\pi}{10}$

We can also solve this graphically.

Sketch a cosine graph $y = 5\cos 5\theta$. There are 5 cycles in one interval of $[0, 2\pi]$, so a first cycle happens on $[0, \frac{2\pi}{5}]$.

8

6

2

10

-8

戊

10

 2π

5

π

b. Set up the integral to calculate the area of the region inside the inner loop of the limaçon $r = \sqrt{2} - 2\sin\theta$. Use the FNINT command to find the area and approximate it the area to two decimal places.

To find the integration limits, find where $r = \sqrt{2} - 2\sin\theta = 0$ where $0 \le \theta < 2\pi$, since this will be where the inner loop starts and ends. TIP: The dashed lines in the above graph are the polar equations $\theta = \alpha$ and $\theta = \beta$, where α and β are the lower and upper limits of integration. You can enter these values in your polar grapher as θmin and θmax to check that you have sketched only the inner loop. Solve $r = \sqrt{2} - 2\sin\theta = 0$ graphically or algebraically.

r1∎√2-2sin(0)

NORMAL I	FLOAT A	UTU REAL	RADIAN	MP	
$\int_{\pi/4}^{3\pi/4} (.5r1^2) d\theta$					
		0	.1415	92653	6

