1. A. Replace the rectangular equation $x=5$ with an appropriate polar equation. Show work please.

$$
\begin{aligned}
& r \cos \theta=5 \\
& r=\frac{5}{\cos \theta} \\
& r=5 \sec \theta
\end{aligned}
$$

B. Replace the rectangular equation $x=7$ with an appropriate polar equation. Show work please.

$$
\begin{aligned}
& r \cos \theta=7 \\
& r=\frac{7}{\cos \theta} \\
& r=7 \sec \theta
\end{aligned}
$$

2. A. Replace the polar equation $r=5 \cos \theta$ with an appropriate rectangular equation. Show work please.

The implicit form of the equation is fine.
In rectangular, the equation is $x^{2}+y^{2}=5 x$

$$
\begin{aligned}
& r=5 \cos \theta \\
& r^{2}=5 r \cos \theta \\
& x^{2}+y^{2}=5 x
\end{aligned}
$$

B. Replace the polar equation $r=5 \cos \theta$ with an appropriate rectangular equation. Show work please.

The implicit form of the equation is fine.
In rectangular, the equation is $x^{2}+y^{2}=7 y$

$$
\begin{align*}
& r=7 \sin \theta \\
& r^{2}=7 r \sin \theta \\
& x^{2}+y^{2}=7 y \tag{4}
\end{align*}
$$

3. Replace the polar equation with an appropriate rectangular equation. Show work please.

$$
\begin{aligned}
r & =3 \sec \theta(1-\tan \theta) \\
r & =\frac{3}{\cos \theta}(1-\tan \theta) \\
r \cos \theta & =3(1-\tan \theta) \\
x & =3\left(1-\frac{y}{x}\right) \\
\frac{x}{3} & =1-\frac{y}{x} \\
x \cdot \frac{x}{3} & =x \cdot\left(1-\frac{y}{x}\right) \\
\frac{x^{2}}{3} & =x-y \\
y & =x-\frac{x^{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
r & =2 \sec \theta(1+\tan \theta) \\
r & =\frac{2}{\cos \theta}(1+\tan \theta) \\
r \cos \theta & =2(1+\tan \theta) \\
x & =2\left(1+\frac{y}{x}\right) \\
\frac{x}{2} & =1+\frac{y}{x} \\
x \cdot \frac{x}{2} & =x \cdot\left(1+\frac{y}{x}\right) \\
\frac{x^{2}}{2} & =x+y \\
y & =\frac{x^{2}}{2}-x
\end{aligned}
$$

Any equations that are equivalent to this are acceptable.
4. Sketch a graph of the curve described by $\left(x^{2}+y^{2}\right)^{3}=16 x^{4}$ by first replacing it with a polar equation and simplifying. Show work please.
a. In polar, the equation is: $r=4 \cos ^{2} \theta \quad\left(x^{2}+y^{2}\right)^{3}=16 x^{4}$
b.

$$
\begin{align*}
\left(r^{2}\right)^{3} & =16 r^{4} \cos ^{4} \theta \tag{4}\\
r^{2} r^{2} r^{2} & =16 r^{4} \cos ^{4} \theta \\
r^{2} & =16 \cos ^{4} \theta \\
r & =4 \cos ^{2} \theta
\end{align*}
$$

(4) 5. The area from $\theta=\alpha$ to $\theta=\beta$ inside a polar graph is $\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta$
A. Find the exact area of the region inside one petal of the rose. You can use the FNINT command, but provide an exact area as a multiple of π.
A. $r=56 \cos 7 \theta$

To find when $r=56 \cos 7 \theta=0$, set $7 \theta= \pm \frac{\pi}{2}$. We have $\theta= \pm \frac{\pi}{14}$
r1 $1856 \cos (7 \theta)$

$\int_{-\pi / 14}^{\pi / 14}\left(.5 r_{1}^{2}\right) d \theta$
351.8583772

Aัnั $/ \pi$
B. $r=72 \cos 9 \theta$

To find when $r=72 \cos 9 \theta=0$, set $9 \theta= \pm \frac{\pi}{2}$. We have $\theta= \pm \frac{\pi}{18}$
r1日72cos(90)

$\int_{-\pi / 18}^{\square \pi}$	$\frac{1}{2}(72 \cos 9 \theta)^{2}$	$d \theta=$
$\int_{-\pi / 18}^{\pi / 18}\left(.5 r 1^{2}\right) d \theta$		
Ans $/ \pi$.	

(6) 6. The arc length from $\theta=0$ to $\theta=\sqrt{21}$ of a polar spiral is given by $\int_{0}^{\sqrt{21}} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$. Report the arc length correct. You can use the FNINT command.
A. $r=18 \theta^{2}$
$\int_{0}^{\sqrt{21}} \sqrt{\left(18 \theta^{2}\right)^{2}+(36 \theta)^{2}} d \theta=702$

r1日18 θ^{2}

$\int_{\theta}^{\sqrt{21}}\left(\sqrt{r_{1}{ }^{2}+(36 \theta)^{2}}\right) d \theta$ 702.

B. $r=30 \theta^{2}$
$\int_{0}^{\sqrt{21}} \sqrt{\left(30 \theta^{2}\right)^{2}+(60 \theta)^{2}} d \theta=1170$
${ }^{\prime} r_{1}-30 \theta^{2} \left\lvert\, \begin{aligned} & \int_{\theta}^{\sqrt{21}}\left(\sqrt{r_{1}{ }^{2}+(60 \theta)^{2}}\right) d \theta \\ & \text {...............................1170. }\end{aligned}\right.$

Bonus:

$\int \sin ^{3} x \cos ^{8} x d x$
Let $u=\cos x$. Then $d u=-\sin x d x$
$\int \sin ^{3} x \cos ^{8} x d x=\int \sin ^{2} x \cos ^{8} x \sin x d x$

$$
\begin{aligned}
& =-\int\left(\sin ^{2} x\right) \cdot \cos ^{8} x \cdot-\sin x d x \\
& =-\int\left(1-u^{2}\right) \cdot u^{8} \cdot d u \\
& =\int\left(u^{2}-1\right) u^{8} d u \\
& =\int\left(u^{10}-u^{8}\right) d u \\
& =\frac{u^{11}}{11}-\frac{u^{9}}{9}+C \\
& =\frac{\cos ^{11} x}{11}-\frac{\cos ^{9} x}{9}+C
\end{aligned}
$$

$\int \sin ^{3} x \cos ^{10} x d x$
Let $u=\cos x$. Then $d u=-\sin x d x$

$$
\begin{aligned}
\int \sin ^{3} x \cos ^{10} x d x & =\int \sin ^{2} x \cos ^{10} x \sin x d x \\
& =-\int\left(\sin ^{2} x\right) \cdot \cos ^{10} x \cdot-\sin x d x \\
& =-\int\left(1-u^{2}\right) \cdot u^{10} \cdot d u \\
& =\int\left(u^{2}-1\right) u^{10} d u \\
& =\int\left(u^{12}-u^{10}\right) d u \\
& =\frac{u^{13}}{13}-\frac{u^{11}}{11}+C \\
& =\frac{\cos ^{13} x}{13}-\frac{\cos ^{11} x}{11}+C
\end{aligned}
$$

$\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=?$
Method 1: $\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=\int \frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\sin \theta}=\int \cot \theta \csc \theta d \theta=-\csc \theta+C$ (See formula sheet if you forgot.)
Method 2: $\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=\int \frac{1}{\sin ^{2} \theta} \cos \theta d \theta \quad$ Let $u=\sin \theta$. Then $d u=\cos \theta d \theta$

$$
=\int \frac{1}{u^{2}} d u=\int u^{-2} d u=\frac{u^{-1}}{-1}+C=-\frac{1}{u}+C=-\frac{1}{\sin \theta}+C=-\csc \theta+C
$$

