1. a. Plot and label the complex numbers.

$$
\begin{aligned}
& z_{1}=5-5 i \\
& z_{2}=-3 i \\
& z_{3}=2 \sqrt{2} e^{i 3 \pi / 4} \\
& z_{4}=4 e^{7 \pi i}
\end{aligned}
$$

b. Write z_{1} and z_{2} in exponential form $r e^{i \theta}$, where r and θ are exact real numbers (and θ is in radians).
Hint: Part (a) may help.
(There are many correct answers for θ; however, report exact radians please.)
$z_{1}=5-5 i$

$$
\begin{aligned}
& r=\frac{5 \sqrt{2}}{\frac{7 \pi}{4}\left(\text { Also }-\frac{\pi}{4}\right)} \\
& \theta=\frac{5 \sqrt{2} e^{i 7 \pi / 4}}{} \\
& \text { (Radians!) } \\
& z_{2}=-3 i \\
& r=\underline{3} \\
& \theta=\frac{\left.\frac{3 \pi}{2} \text { (Also }-\frac{\pi}{2}\right)}{} \\
& \text { (Radians!) }
\end{aligned}
$$

Exponential form of z_{2} is $3 e^{i 3 \pi / 2}$
c. Write z_{3} and z_{4} in rectangular form $a+b i$, where a and b are real numbers.

$$
\begin{aligned}
& z_{3}=2 \sqrt{2} e^{i 3 \pi / 4}=\boxed{-2}+\square \\
& z_{4}=4 e^{7 \pi i}=\square-4
\end{aligned}
$$

2. a. Write $\left(2 e^{i \pi / 3}\right)^{4}$ in the exponential form $r e^{i \theta}$, where θ is exact and in radians.

$$
r=16
$$

$$
\begin{equation*}
\theta=\frac{4 \pi}{3} \tag{Radians!}
\end{equation*}
$$

Exponential form $r e^{i \theta}$ of $\left(2 e^{i \pi / 3}\right)^{4}$ is $16 e^{i 4 \pi / 3}$
b. Write $\left(2 e^{i \pi / 3}\right)^{4}$ in rectangular form $a+b i$, using exact values.
$\left(2 e^{\left(i \frac{\pi}{3}\right)}\right)^{4}=-8+-8 \sqrt{3} \cdot i$
3. Consider the complex number i^{37027}.
a. A student uses a calculator to try to write the number in rectangular form $a+b i$, where a and b are real numbers. See the screen below. What should the exact answer really be?
Report the exact answer in rectangular form $a+b i$:

$$
i^{3727}=\square+\square \cdot i
$$

b. When trying to write the number in polar form $r e^{i \theta}$ where r and θ are real numbers, a student sees the screen below. What is the exact radian measure of the angle θ on the screen? (It involves π.)

c. Report the location of i^{37027} in the complex plane.
A. the positive real axis
B. the positive imaginary axis
C. the negative real axis

D the negative imaginary axis
4. If the complex number z is represented by a vector, describe how to construct the vector u which is the complex number z multiplied by the number $r e^{i \theta}$, i.e, $u=z \cdot r e^{i \theta}$.

Sketch u so that its length is r times the length of z and its angle is rotated by the value θ.
5. Report your answers in polar form $r \operatorname{cis} \theta$ in radians, exponential form $r e^{i \theta}$ in radians, and in rectangular form $a+b i$ Report all the fourth roots of the number -1 and sketch them on the complex plane.

Step 1: Represent -1 in the form $r e^{(i \theta)}=r \operatorname{cis} \theta=r(\cos \theta+i \sin \theta)$.
Sketching the number can help you determine $r=1$ and $\theta=\pi$.
We could write $-1=1$ cis $\pi=1 e^{(i \pi)}$.
Step 2: To find a fourth root, we raise the complex number to the fourth power, i.e., $\left(e^{(i \pi)}\right)^{1 / 4}$ is one of these. But there are four of these roots.

Step 3: \quad Sketch $\left(e^{(i \pi)}\right)^{1 / 4}=e^{(i \pi / 4)}=\operatorname{cis} \frac{\pi}{4}=\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$.
The four roots are evenly spaced $\frac{2 \pi}{4}=\frac{\pi}{2}$ apart,
so we have cis $\frac{\pi}{4}$, $\operatorname{cis} \frac{3 \pi}{4}$, cis $\frac{5 \pi}{4}$, and cis $\frac{7 \pi}{4}$, or
we could write $e^{(i \pi / 4)}, e^{(i 3 \pi / 4)}, e^{(i 5 \pi / 4)}$, and $e^{(i 7 \pi / 4)}$, or, by symmetry: $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i,-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i,-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i$, and $\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i$,

You can check this by raising each to the 4 th power: $\left(e^{(i \pi / 4)}\right)^{4}=e^{(i \pi)}=-1$,

$(\sqrt{.5}+\sqrt{.5} i)^{4}$	
$(-\sqrt{.5}+\sqrt{.5})^{4}$	
$(-\sqrt{.5}-\sqrt{.5 i})^{4}$	
$(-\sqrt{.5}+\sqrt{.5 i})^{4}$	

6. Report all the sixth roots of the number $-64 i$. Report your answers in polar form r cis θ in degrees.

Step 1: Represent $-64 i$ in the form $r e^{i \theta}=r \operatorname{cis} \theta$. Since $r e^{(i \theta)}=r \operatorname{cis} \theta=r(\cos \theta+i \sin \theta)$, we have $r=64$ and $\theta=270^{\circ}$. We could write $-64 i=64$ cis $270^{\circ}=64 e^{i 270^{\circ}}$.
Alternatively, you could also use $\theta=-90^{\circ}$.
Step 2: To find a sixth root, we raise the complex number to the one sixth power,
 i.e., $\left(64 e^{i 270^{\circ}}\right)^{1 / 6}=2 e^{i 45^{\circ}}$ is one of these. But there are six of these roots.

Step 3: The six roots are evenly spaced $\frac{360^{\circ}}{6}=60^{\circ}$ apart, so we have $2 \operatorname{cis} 45^{\circ}, 2 \operatorname{cis}\left(45^{\circ}+60^{\circ}\right)=\operatorname{cis}\left(105^{\circ}\right)$, $\operatorname{cis}\left(105^{\circ}+60^{\circ}\right)=\operatorname{cis}\left(165^{\circ}\right)$, $\operatorname{cis}\left(165^{\circ}+60^{\circ}\right)=\operatorname{cis}\left(225^{\circ}\right)$, $\operatorname{cis}\left(225^{\circ}+60^{\circ}\right)=\operatorname{cis}\left(285^{\circ}\right), \operatorname{cis}\left(285^{\circ}+60^{\circ}\right)=\operatorname{cis}\left(345^{\circ}\right)$. You can check this by raising each to the 6th power:

$$
\begin{aligned}
& \left(2 \text { cis } 45^{\circ}\right)^{6}=\left(2 e^{i 45^{\circ}}\right)^{6}=2^{6} e^{i 45^{\circ} \cdot 6}=64 e^{i 270^{\circ}}=-64 i, \\
& \left(2 \text { cis } 105^{\circ}\right)^{6}=2^{6} e^{i 105^{\circ} \cdot 6}=64 e^{i 630^{\circ}}=64 e^{i\left(270+360^{\circ}\right)}=-64 i, \\
& \left(2 \text { cis } 165^{\circ}\right)^{6}=2^{6} e^{i 165^{\circ} \cdot 6}=64 e^{i 990^{\circ}}=64 e^{i\left(270+2 \cdot 360^{\circ}\right)}=-64 i, \\
& \left(2 \text { cis } 225^{\circ}\right)^{6}=2^{6} e^{i 225^{\circ} \cdot 6}=64 e^{i 1350^{\circ}}=64 e^{i\left(270+3 \cdot 360^{\circ}\right)}=-64 i, \\
& \left(2 \text { cis } 285^{\circ}\right)^{6}=2^{6} e^{i 285^{\circ} \cdot 6}=64 e^{i 1710^{\circ}}=64 e^{i\left(270+4 \cdot 360^{\circ}\right)}=-64 i, \text { and } \\
& \left(2 \text { cis } 345^{\circ}\right)^{6}=2^{6} e^{i 345^{\circ} \cdot 6}=64 e^{i 2070^{\circ}}=64 e^{i\left(270+5 \cdot 360^{\circ}\right)}=-64 i,
\end{aligned}
$$

Had you decided to use $\theta=-90^{\circ}$, the rectangular form $a+b i$ and plots would be the same, but the exponential form would be $\left(64 e^{-90^{\circ} i}\right)^{1 / 6}=2 e^{-15^{\circ} i}$ and then
$2 e^{-75^{\circ} i}$,
$2 e^{-135^{\circ} i}$,
$2 e^{-195^{\circ} i}$,
$2 e^{-255^{\circ} i}$, and
$2 e^{-315^{\circ} i}$.

7. Report all the third roots of the number $8 i$ and sketch them on the complex plane.

Report your answers in polar form r cis θ in radians, exponential form $r e^{i \theta}$ in radians, and in rectangular form $a+b i$.

Step 1: Represent $8 i$ in the form $r e^{i \theta}=r \operatorname{cis} \theta$. Since $r e^{(i \theta)}=r \operatorname{cis} \theta=r(\cos \theta+i \sin \theta)$, we have $r=8$ and $\theta=\frac{\pi}{2}$. We could write $84 i=8$ cis $\frac{\pi}{2}=8 e^{\pi i / 2}$.
Alternatively, you could also use $\theta=-\frac{3 \pi}{2}$.
Step 2: To find a third root, we raise the complex number to the one third power, i.e., $\left(8 e^{\pi i / 2}\right)^{1 / 3}=2 e^{\pi i / 6}$ is one of these. But there are three of these roots.

Step 3: The three roots are evenly spaced $\frac{2 \pi}{3}=\frac{4 \pi}{6}$ apart, or $120^{\circ}, \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$ so we have 2 cis $\frac{\pi}{6}, 2$ cis $\frac{5 \pi}{6}$, and 2 cis $\frac{3 \pi}{2}$, or we could write $2 e^{(i \pi / 6)}, 2 e^{(i 5 \pi / 6)}$, and $2 e^{(i 3 \pi / 2)}$, or, $2 \cdot \frac{\sqrt{3}}{2}+2 \cdot \frac{1}{2} i=\sqrt{3}+i$,
$2 \cdot\left(-\frac{\sqrt{3}}{2}\right)+2 \cdot \frac{1}{2} i=-\sqrt{3}+i$, and
$-2 i$.
You can check this by raising each to the 3rd power: $\left(2 e^{(i \pi / 6)}\right)^{3}=8 e^{(i \pi / 2)}=8 i$,

$\left(2 e^{(i 5 \pi / 6}\right)^{3}=8 e^{(i 5 \pi / 2)}=8 i$,

$$
\left(2 e^{(i 3 \pi / 2)}\right)^{3}=8 e^{(i 9 \pi / 2)}=8 i
$$

Had you decided to use $\theta=-\frac{3 \pi}{2}$, the rectangular form $a+b i$ and plots would be the same, but the exponential form would be $\left(8 e^{-3 \pi i / 2}\right)^{1 / 3}=2 e^{-\pi i / 2}$ and then $2 e^{-7 \pi i / 6}$ and $2 e^{-11 \pi i / 6}$.

8. Consider the complex geometric series $f(z)=\sum_{k=0}^{\infty} 50 z^{k}=50+50 z+50 z^{2}+50 z^{3}+\ldots$ which converges on $|z|<1$. Report the value of $f\left(\frac{3 i}{4}\right)=\sum_{k=0}^{\infty} 50\left(\frac{3 i}{4}\right)^{k}$.
a. We separate even powers of $\frac{3 i}{4}$ and odd powers of $\frac{3 i}{4}$.

$$
f\left(\frac{3 i}{4}\right)=\sum_{k=0}^{\infty} 50\left(\frac{3 i}{4}\right)^{k}=50\left(1+\left(\frac{3 i}{4}\right)^{2}+\left(\frac{3 i}{4}\right)^{4}+\left(\frac{3 i}{4}\right)^{6}+\ldots\right)+50\left(\left(\frac{3 i}{4}\right)^{1}+\left(\frac{3 i}{4}\right)^{3}+\left(\frac{3 i}{4}\right)^{5}+\left(\frac{3 i}{4}\right)^{7}+\ldots\right)
$$

First simplify powers of \boldsymbol{i}.
Then combine real parts in the first row and imaginary parts in the second row.
Then factor out 50 in the first row and $50 \cdot \frac{3 i}{4}$ in the second row. Enter real numbers in each box.
You can write the real numbers as powers of $\frac{3}{4}$.
$f\left(\frac{3 i}{4}\right)=50(1+\underbrace{-\left(\frac{3}{4}\right)^{2}}+\sqrt[\left(\frac{3}{4}\right)^{4}]{ }+\sqrt{-\left(\frac{3}{4}\right)^{6}}+\ldots)+50 \cdot \frac{3 i}{4}\left(1+\sqrt{-\left(\frac{3}{4}\right)^{2}}+\sqrt{\left(\frac{3}{4}\right)^{4}}+\sqrt{-\left(\frac{3}{4}\right)^{6}}+\ldots\right)$
b. The geometric series $1+\left(\frac{3 i}{4}\right)^{2}+\left(\frac{3 i}{4}\right)^{4}+\left(\frac{3 i}{4}\right)^{6}+\ldots$ has $a=1$ and $r=-\frac{9}{16}$ and sum equal to $\frac{16}{25}$.
The geometric series here has $a=1$ and $r=-\frac{9}{16}$ and sum equal to $\frac{16}{25}$.
Here's why: the series $1-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{4}-\left(\frac{3}{4}\right)^{6}+\ldots$ has the first term 1 and ratio $r=\left(\frac{3 i}{4}\right)^{2}=\frac{9 i^{2}}{16}=-\frac{9}{16}$.
This sum of the series is $\frac{a}{1-r}=\frac{1}{1-\left(-\frac{9}{16}\right)}=\frac{1}{1+\frac{9}{16}}=\frac{16}{25}$.
You can use the calculator and Frac it or use the stacked fraction:

You can also use the calculator with a complex $r=\left(\frac{3 i}{4}\right)^{2}$
Notice this works even in Real mode.
$1 /\left(1-(.75 i)^{2}\right)$
Äns Firac
$0.64+0 i$
$\frac{16}{25}+0 i$
c. Combining, we have $f\left(\frac{3 i}{4}\right)=\sum_{k=0}^{\infty} 50\left(\frac{3 i}{4}\right)^{k}=\square 32+24 i \quad$ (Insert integers in the boxes.)

$$
\text { Method 1: } f(z)=\sum_{k=0}^{\infty} 50 z^{k}=50+50 z+50 z^{2}+50 z^{3}+\ldots=\frac{50}{1-z}
$$

$$
\text { so } f\left(\frac{3 i}{4}\right)=\sum_{k=0}^{\infty} 50\left(\frac{3 i}{4}\right)^{k}=\frac{50}{1-\frac{3 i}{4}} \quad 50 /(1-.75 i)
$$

Method 2: From part b, we have $1-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{4}-\left(\frac{3}{4}\right)^{6}+\ldots=\frac{16}{25}$

$$
\begin{aligned}
f\left(\frac{3 i}{4}\right) & =50\left(1-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{4}-\left(\frac{3}{4}\right)^{6}+\ldots\right)+50 \cdot \frac{3 i}{4}\left(1-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{4}-\left(\frac{3}{4}\right)^{6}+\ldots\right) \\
& =50 \cdot\left(\frac{16}{25}\right)+50 \cdot \frac{3 i}{4} \cdot\left(\frac{16}{25}\right) \\
& =2 \cdot 16+\frac{50}{25} \cdot \frac{16}{4} \cdot \frac{3 i}{1} \\
& =32+2 \cdot 4 \cdot 3 i \\
& =32+24 i
\end{aligned}
$$

TIP: More problems like Question 8 are in HW 26 Complex Numbers Part 1 and also in HW 26 Complex Numbers Part 1 (Just for Practice. No Grade Will be Recorded.)

