KEY

1. a. Plot and label the complex numbers.

$$z_{1} = 5 - 5i$$

$$z_{2} = -3i$$

$$z_{3} = 2\sqrt{2}e^{i3\pi/4}$$

$$z_{4} = 4e^{7\pi i}$$

b. Write z_1 and z_2 in exponential form $re^{i\theta}$, where r and θ are exact real numbers (and θ is in radians). Hint: Part (a) may help.

(There are many correct answers for θ ; however,

report exact **radians** please.)

$$z_{1} = 5 - 5i$$

$$r = 5\sqrt{2}$$

$$\theta = \frac{7\pi}{4} (\text{Also} - \frac{\pi}{4})}{(\text{Radians!})}$$

$$z_{2} = -3i$$

$$r = 3$$

$$\theta = \frac{3\pi}{2} (\text{Also} - \frac{\pi}{2})}{(\text{Radians!})}$$
(Radians!)

Exponential form of z_2 is $3e^{i3\pi/2}$

c. Write z_3 and z_4 in rectangular form a + bi, where a and b are real numbers.

2. a. Write $(2e^{i\pi/3})^4$ in the exponential form $re^{i\theta}$, the exponential form $re^{i\theta}$, where θ is exact and in radians.

$$r = 16$$
$$\theta = \frac{4\pi}{3} \text{ (Radians!)}$$

Exponential form $re^{i\theta}$ of $(2e^{i\pi/3})^4$ is <u>16e^{i4\pi/3}</u>

b. Write $(2e^{i\pi/3})^4$ in rectangular form a + bi, using exact values.

$$(2e^{(i\frac{\pi}{3})})^4 = -8 + -8\sqrt{3} \cdot i$$

- **3**. Consider the complex number i^{37027} .
 - a. A student uses a calculator to try to write the number in rectangular form a + bi, where a and b are real numbers. See the screen below. What should the exact answer really be? Report the exact answer in rectangular form a + bi:

 $-8\sqrt{3}i$

$$i^{37027} = \boxed{0} + \boxed{-1} \cdot i$$

b. When trying to write the number in polar form $re^{i\theta}$ where *r* and θ are real numbers, a student sees the screen below. What is the exact radian measure of the angle θ on the screen? (It involves π .)

- B. the positive imaginary axis
- C. the negative real axis
- (D) the negative imaginary axis

4. If the complex number z is represented by a vector, describe how to construct the vector u which is the complex number z multiplied by the number $re^{i\theta}$, i.e., $u = z \cdot re^{i\theta}$.

Sketch *u* so that its length is *r* times the length of *z* and its angle is rotated by the value θ .

- 5. Report your answers in polar form $r \operatorname{cis} \theta$ in radians, exponential form $r e^{i\theta}$ in radians, and in rectangular form a + bi Report all the fourth roots of the number -1 and sketch them on the complex plane.
 - Step 1: Represent -1 in the form $re^{(i\theta)} = r\operatorname{cis} \theta = r(\cos\theta + i\sin\theta)$. Sketching the number can help you determine r = 1 and $\theta = \pi$. We could write $-1 = 1 \operatorname{cis} \pi = 1 e^{(i\pi)}$.

Step 2: To find a fourth root, we raise the complex number to the fourth power, i.e., $(e^{(i\pi)})^{1/4}$ is one of these. But there are four of these roots.

Step 3: Sketch
$$(e^{(i\pi)})^{1/4} = e^{(i\pi/4)} = cis\frac{\pi}{4} = cos\frac{\pi}{4} + isin\frac{\pi}{4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
.
The four roots are evenly spaced $\frac{2\pi}{4} = \frac{\pi}{2}$ apart,

so we have $cis\frac{\pi}{4}$, $cis\frac{3\pi}{4}$, $cis\frac{5\pi}{4}$, and $cis\frac{7\pi}{4}$, or

we could write $e^{(i\pi/4)}$, $e^{(i3\pi/4)}$, $e^{(i5\pi/4)}$, and $e^{(i7\pi/4)}$, or, by symmetry: $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, $-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, $-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$, and $\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$,

You can check this by raising each to the 4th power: $(e^{(i\pi/4)})^4 = e^{(i\pi)} = -1$,

ou can check this by r	
IORMAL FLOAT AUTO &+bi RADIAN MP 👖	
(1.5+1.5i) ⁴	
-1+0i	
-1.5+1.51) -1+0i	
[-].5 -].5i) ⁴	
-1+0ı -[5+[5i] ⁴	
-1+0i	

$$(e^{(i3\pi/4)})^4 = e^{(i3\pi)} = -1,$$

$$(e^{(i5\pi/4)})^4 = e^{(i5\pi)} = -1,$$
 and

$$(e^{(i7\pi/4)})^4 = e^{(i7\pi)} = -1.$$

6. Report all the sixth roots of the number -64i. Report your answers in polar form $rcis\theta$ in degrees.

Step 1: Represent -64*i* in the form $re^{i\theta} = r \operatorname{cis} \theta$. Since $re^{(i\theta)} = r \operatorname{cis} \theta = r(\cos \theta + i \sin \theta)$, we have r = 64 and $\theta = 270^\circ$. We could write $-64i = 64 \operatorname{cis} 270^\circ = 64e^{i270^\circ}$. Alternatively, you could also use $\theta = -90^\circ$.

Step 2: To find a sixth root, we raise the complex number to the one sixth power, i.e., $(64e^{i270^\circ})^{1/6} = 2e^{i45^\circ}$ is one of these. But there are six of these roots.

Step 3: The six roots are evenly spaced
$$\frac{360}{6} = 60^{\circ}$$
 apart,

so we have $2 \operatorname{cis} 45^\circ$, $2 \operatorname{cis} (45^\circ + 60^\circ) = \operatorname{cis} (105^\circ)$, $\operatorname{cis} (105^\circ + 60^\circ) = \operatorname{cis} (165^\circ)$, $\operatorname{cis} (165^\circ + 60^\circ) = \operatorname{cis} (225^\circ)$, $\operatorname{cis} (225^\circ + 60^\circ) = \operatorname{cis} (285^\circ)$, $\operatorname{cis} (285^\circ + 60^\circ) = \operatorname{cis} (345^\circ)$. You can check this by raising each to the 6th power: $(2 \operatorname{cis} 45^\circ)^6 = (2e^{i45^\circ})^6 = 2^6 e^{i45^\circ \cdot 6} = 64e^{i270^\circ} = -64i$

$$(2 \operatorname{cis} 105^{\circ})^{6} = 2^{6} e^{i105^{\circ} \cdot 6} = 64 e^{i630^{\circ}} = 64 e^{i(270+360^{\circ})} = -64i,$$

$$(2 \operatorname{cis} 165^{\circ})^{6} = 2^{6} e^{i165^{\circ} \cdot 6} = 64 e^{i990^{\circ}} = 64 e^{i(270+2\cdot360^{\circ})} = -64i,$$

$$(2 \operatorname{cis} 225^{\circ})^{6} = 2^{6} e^{i225^{\circ} \cdot 6} = 64 e^{i1350^{\circ}} = 64 e^{i(270+3\cdot360^{\circ})} = -64i,$$

$$(2 \operatorname{cis} 285^{\circ})^{6} = 2^{6} e^{i285^{\circ} \cdot 6} = 64 e^{i1710^{\circ}} = 64 e^{i(270+4\cdot360^{\circ})} = -64i, \text{ and}$$

$$(2 \operatorname{cis} 345^{\circ})^{6} = 2^{6} e^{i345^{\circ} \cdot 6} = 64 e^{i2070^{\circ}} = 64 e^{i(270+5\cdot360^{\circ})} = -64i.$$

Had you decided to use $\theta = -90^{\circ}$, the rectangular form a + bi and plots would be the same, but the exponential form would be

 $(64e^{-90^{\circ}i})^{1/6} = 2e^{-15^{\circ}i}$ and then $2e^{-75^{\circ}i}$, $2e^{-135^{\circ}i}$, $2e^{-195^{\circ}i}$, $2e^{-255^{\circ}i}$, and $2e^{-315^{\circ}i}$.

- 7. Report all the third roots of the number 8i and sketch them on the complex plane. Report your answers in polar form $r cis \theta$ in radians, exponential form $re^{i\theta}$ in radians, and in rectangular form a + bi.
 - Step 1: Represent 8*i* in the form $re^{i\theta} = r \operatorname{cis} \theta$. Since $re^{(i\theta)} = r \operatorname{cis} \theta = r(\cos \theta + i \sin \theta)$, we have r = 8 and $\theta = \frac{\pi}{2}$. We could write $84i = 8 \operatorname{cis} \frac{\pi}{2} = 8e^{\pi i/2}$. Alternatively, you could also use $\theta = -\frac{3\pi}{2}$.
 - Step 2: To find a third root, we raise the complex number to the one third power, i.e., $(8e^{\pi i/2})^{1/3} = 2e^{\pi i/6}$ is one of these. But there are three of these roots.

Step 3: The three roots are evenly spaced
$$\frac{2\pi}{3} = \frac{4\pi}{6}$$
 apart, or 120° , $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$
so we have $2 \operatorname{cis} \frac{\pi}{6}$, $2 \operatorname{cis} \frac{5\pi}{6}$, and $2 \operatorname{cis} \frac{3\pi}{2}$, or
we could write $2e^{(i\pi/6)}$, $2e^{(i5\pi/6)}$, and $2e^{(i3\pi/2)}$, or,
 $2 \cdot \frac{\sqrt{3}}{2} + 2 \cdot \frac{1}{2}i = \sqrt{3} + i$,
 $2 \cdot (-\frac{\sqrt{3}}{2}) + 2 \cdot \frac{1}{2}i = -\sqrt{3} + i$, and
 $-2i$.
You can check this by raising each to the 3rd power: $(2e^{(i\pi/6)})^3 = 8e^{(i\pi/2)} = 8i$,
 $(2e^{(i5\pi/6)})^3 = 8e^{(i5\pi/2)} = 8i$,

NORMAL FLOAT AUTO &+bi RADIAN MP	Î
(√3+i) ³	
	.8i
(-√3+i) ³	
	8i
(-2i) ³	
<u></u>	.8i
•	

Had you decided to use $\theta = -\frac{3\pi}{2}$,

the rectangular form a + bi and plots would be the same, but the exponential form would be

 $(8e^{-3\pi i/2})^{1/3} = 2e^{-\pi i/2}$ and then $2e^{-7\pi i/6}$ and $2e^{-11\pi i/6}$.

Consider the complex geometric series $f(z) = \sum_{k=0}^{\infty} 50z^k = 50 + 50z + 50z^2 + 50z^3 + \dots$ which converges 8.

on |z| < 1. Report the value of $f\left(\frac{3i}{4}\right) = \sum_{k=0}^{\infty} 50\left(\frac{3i}{4}\right)^k$.

a. We separate even powers of $\frac{3i}{4}$ and odd powers of $\frac{3i}{4}$.

$$f\left(\frac{3i}{4}\right) = \sum_{k=0}^{\infty} 50\left(\frac{3i}{4}\right)^{k} = 50\left(1 + \left(\frac{3i}{4}\right)^{2} + \left(\frac{3i}{4}\right)^{4} + \left(\frac{3i}{4}\right)^{6} + \dots\right) + 50\left(\left(\frac{3i}{4}\right)^{1} + \left(\frac{3i}{4}\right)^{3} + \left(\frac{3i}{4}\right)^{5} + \left(\frac{3i}{4}\right)^{7} + \dots\right)$$

First simplify powers of *i*.

Then combine real parts in the first row and imaginary parts in the second row.

Then factor out 50 in the first row and $50 \cdot \frac{3i}{4}$ in the second row. Enter **real** numbers in each box.

You can write the real numbers as powers of $\frac{3}{4}$.

$$f\left(\frac{3i}{4}\right) = 50\left(1 + \left[-\left(\frac{3}{4}\right)^2\right] + \left[\left(\frac{3}{4}\right)^4\right] + \left[-\left(\frac{3}{4}\right)^6\right] + \ldots\right) + 50 \cdot \frac{3i}{4}\left(1 + \left[-\left(\frac{3}{4}\right)^2\right] + \left[\left(\frac{3}{4}\right)^4\right] + \left[-\left(\frac{3}{4}\right)^6\right] + \ldots\right)$$

b. The geometric series
$$1 + \left(\frac{3i}{4}\right)^2 + \left(\frac{3i}{4}\right)^4 + \left(\frac{3i}{4}\right)^6 + \dots$$
 has $a = 1$ and $r = \boxed{-\frac{9}{16}}$ and sum equal to $\boxed{\frac{16}{25}}$.

The geometric series here has a = 1 and $r = \begin{bmatrix} -\frac{9}{16} \end{bmatrix}$ and sum equal to $\begin{bmatrix} \frac{16}{25} \end{bmatrix}$

Here's why: the series $1 - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^4 - \left(\frac{3}{4}\right)^6 + \dots$ has the first term 1 and ratio $r = \left(\frac{3i}{4}\right)^2 = \frac{9i^2}{16} = -\frac{9}{16}$. NORMAL FLOAT AUTO <u>real radian mp</u> This sum of the series is $\frac{a}{1-r} = \frac{1}{1-(-\frac{9}{16})} = \frac{1}{1+\frac{9}{16}} = \frac{16}{25}$. $\frac{1}{1+\frac{9}{16}}$

You can use the calculator and Frac it or use the stacked fraction:

You can also use the calculator with a complex
$$r = \left(\frac{3i}{4}\right)^2$$

Notice this works even in Real mode.

Combining, we have $f\left(\frac{3i}{4}\right) = \sum_{k=0}^{\infty} 50\left(\frac{3i}{4}\right)^k = \boxed{32} + \boxed{24}i$ (Insert integers in the boxes.) c. Method 1: $f(z) = \sum_{k=0}^{\infty} 50z^k = 50 + 50z + 50z^2 + 50z^3 + \dots = \frac{50}{1-z}$

so
$$f\left(\frac{3i}{4}\right) = \sum_{k=0}^{\infty} 50\left(\frac{3i}{4}\right)^k = \frac{50}{1-\frac{3i}{4}}$$
 NORMAL FLOAT AUTO REAL RADIAN MP
50/(1-.75i)

п

<u>16</u> 25

Π

16/25 +0i

NORMAL FLOAT AUTO REAL RADIAN MP

0.64+0i Ans⊁Frac

 $1/(1-(.75i)^2)$

Method 2: From part **b**, we have
$$1 - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^4 - \left(\frac{3}{4}\right)^6 + \dots = \frac{16}{25}$$

$$f\left(\frac{3i}{4}\right) = 50\left(1 - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^4 - \left(\frac{3}{4}\right)^6 + \dots\right) + 50 \cdot \frac{3i}{4}\left(1 - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^4 - \left(\frac{3}{4}\right)^6 + \dots\right)$$

$$= 50 \cdot \left(\frac{16}{25}\right) + 50 \cdot \frac{3i}{4} \cdot \left(\frac{16}{25}\right)$$

$$= 2 \cdot 16 + \frac{50}{25} \cdot \frac{16}{4} \cdot \frac{3i}{1} + \frac{32}{4} + 2 \cdot 4 \cdot 3i$$

TIP: More problems like Question 8 are in HW 26 Complex Numbers Part 1 and also in HW 26 Complex Numbers Part 1 (Just for Practice. No Grade Will be Recorded.)