MA 16600 KEY Practice Questions over 8.3 and Appendix C

- **1.** State the double-angle identity used to integrate $\sin^2 x$.
- **2.** State the double-angle identity used to integrate $\cos^2 x$.

$$\sin^{2} x = \boxed{\frac{1}{2}(1 - \cos 2x)}$$
$$\cos^{2} x = \boxed{\frac{1}{2}(1 + \cos 2x)}$$

3. Find the indefinite integral. Show work.
$$\int \sin^3 x \, dx$$
$$\int \sin^3 x \, dx = \int \sin^2 x \, \sin x \, dx$$
$$= \int (1 - \cos^2 x) \sin x \, dx$$
$$= \int \sin x \, dx - (-1) \int \cos^2 x \cdot (-\sin x) \, dx$$
$$= \int \sin x \, dx + \int u^2 \, du$$
$$= -\cos x + \frac{u^3}{3} + C$$
$$= -\cos x + \frac{\cos^3 x}{3} + C$$
$$= -\cos x + \frac{\cos^3 x}{3} - \cos x + C$$

4. Find the indefinite integrals. Show work.

a.
$$\int \tan^9 x \sec^2 x \, dx = \frac{1}{10} \frac{1}{2} \tan^{10} \frac{1}{2} + C$$

 $u = \tan x$ => $\int \tan^9 x \sec^2 x \, dx = \int u^9 \, du = \frac{1}{10} \frac{10^9 + C}{10^7 + C}$
 $du = \sec^2 x \, dx$ => $\int \tan^9 x \sec^2 x \, dx = \int u^9 \, du = \frac{1}{10} \frac{10^9 + C}{10^7 + C}$

b.
$$\int \cos^2 \theta \, d\theta = \frac{\pm \theta + \frac{1}{4} \sin 2\theta}{Use \ \text{the Pythegorean bouble /dentity } \cos^2 \theta = \frac{\pm}{2} (1 + \cos 2\theta)}$$
$$\int \cos^2 \theta \, d\theta = \frac{1}{2} \int (1 + \cos 2\theta) \, d\theta = \frac{1}{2} \int d\theta + \frac{1}{2} \cdot \frac{1}{2} \int \frac{\cos 2\theta}{\cos 4} \cdot \frac{2}{4} \frac{d\theta}{44}$$
$$= \frac{1}{2} \cdot \theta + \frac{1}{4} \sin 2\theta + c$$

_

c. $\int \sin^3 x \cos^6 x \, dx = \frac{1}{4} \cos^9 x - \frac{1}{4} \cos^7 x$ If you let $u = \sin x$, then we need one $\cos x$ for du, which leaves $\int u^3 \cos^5 x \, dx$ If you let $u = \sin x$, then so let $u = \cos x$ => $\int \cos^6 x \cdot \sin^2 x \cdot \frac{\sin x dx(-1)(-1)}{du = -\sin x dx}$ = $\int u^6 \cdot \sin^2 x \cdot \frac{du}{du} \cdot (-1)$ = (46.(-1) (1-cos2x) du = $\int u^{4}(-1)(1-u^{2})du = \int u^{4}(u^{2}-1)du$ = S(u^e-u^e)du = \$ " - \$ "+C = 5. Consider the integral $\int \frac{\sin\theta}{\cos^2\theta} d\theta$. a. Select which of these is the antiderivative for the integral $\int \frac{\sin \theta}{\cos^2 \theta} d\theta$. E sec θ + C K. -sec θ + C B. $\cos \theta + C$ C. $\tan \theta + C$ D. $\csc \theta + C$ H. $-\cos \theta + C$ I. $-\tan \theta + C$ J. $-\csc \theta + C$ D. $\csc \theta + C$ A. $\sin \theta + C$ F. $\cot \theta + C$ G. $-\sin\theta + C$ L. $-\cot \theta + C$ M. All of these. N. None of these. b. Explain your reasoning for your selection. $d : \int \frac{\sin \theta}{\cos^2 \theta} d\theta = \int \sec \theta \tan \theta d\theta = \int \sec \theta + c \int from formula sheet$ hod 1: od 2: Let $u = \cos \theta$ $du = -\sin \theta d\theta$ $\int \frac{\sin \theta}{\cos^2 \theta} d\theta = -\int \frac{1}{\cos^2 \theta} (-\sin \theta) d\theta = -\int u^2 du = \frac{1}{t} + C$ 6. Consider $\int \sec^{14} x \tan^{17} x \, dx$ **a.** Suppose we let $u = \tan x$. Then $du = \underbrace{\mathsf{Sec}}^{\mathsf{f}} \mathsf{X}$ Then we can write $\int \sec^{14} x \tan^{17} x \, dx = \int \left(\frac{17}{1 + 4^2} \right)^{4/2}$ du. Your answer is a binomial in terms of u raised to a power multiplied by u raised to a power. Do not multiply it out. Do not find the antiderivative. Just leave it as a polynomial. $\int \sec^{14}x \tan^{17}x dx = \int u^{17} \sec^{12}x \cdot \sec^{2}x dx$ = $\int u^{17} (\sec^{2}x)^{6} du$ = $\int u^{17} (1 + \tan^{2}x)^{6} du = \int u^{17} (1 + u^{2})^{6} du$ se A+tan²x= sec X **b.** Suppose we let $w = \sec x$. Then $dw = \operatorname{Sec} w$ throw dxThen we can write $\int \sec^{14} x \tan^{17} x \, dx = \int \left| \omega^{13} (\omega^2 - 1)^8 \right|^8$ dw. Your answer is a binomial in terms of w raised to a power multiplied by w raised to a power. Do not multiply it out. Do not find the antiderivative, Just leave it as a polynomial. $S \sec^{14} x \tan^{17} x dx = S \sec^{13} x \tan^{16} x \sec x \tan x dx$ $= S \omega^{13} (\tan^2 x)^{8} \quad du = S u$

- 9. Consider the complex number i^{37027}
 - **a.** A student uses a calculator to try to write the number in rectangular form x + yi, where x and yare real numbers. See the screen shown.

What should the exact answer really be? Report the exact answer in rectangular form x + yi:

$$i^{37027} =$$
 0 + -1 · i

The value 2.377E–10 is the calculator's confusing attempt at reporting the number 0.

 $2.377 \cdot 10^{-10} = 0.000000002377$

Manually, you can pull out a multiple of 4 from 37027 since $i^4 = 1$.

So $9256 \cdot 4 = 37024$ is a close multiple of 4 near 37027.

$$i^{37027} = i^{37024} i^3 = (i^4)^{9256} \cdot i^3 = (1)^{9256} \cdot i^3 = (1)i^3 = i^2i = -i = 0 - i$$

b. Report the location of i³⁷⁰²⁷ in the complex plane. Plot the point.
A. the positive real axis
B. the positive imaginary axis
C. the negative real axis
-2 -1
D the negative imaginary axis
E. none of these

c. Use part **b** to report i^{37027} in polar form in polar form $r \operatorname{cis} \theta$, where $r \operatorname{and} \theta$ are exact real numbers (and θ is in radians). Hint: Part (b) may help. (There are many correct answers for θ ; however for θ please choose from 0, $\pi/6$, $\pi/4$, $\pi/3$, $\pi/2$, $2\pi/3$, $3\pi/4$, $5\pi/6$, π , $7\pi/6$, $5\pi/4$, $4\pi/3$, $3\pi/2$, $5\pi/3$, $7\pi/4$, or $11\pi/6$)

Polar form
$$r \operatorname{cis} \theta$$
 of $i^{37027} = \begin{bmatrix} 1 & \operatorname{cis} & 3\pi/2 \end{bmatrix}$

i³⁷⁰²⁷

2.377E-10-i

