KEY Practice Questions from Section 10.6-10.8

 $\sum_{n=0}^{\infty} (-1)^{n+1} a$ $\sum_{n=1}^{\infty}$ (-1)ⁿ⁺¹ $a_n = \frac{2}{1} - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \frac{6}{5} - \frac{7}{6} + ...$ **1.** Suppose $\sum (-1)^{n+1}$ $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ 1 **a.** What is a_n ? $a_n = \frac{n+1}{n+1}$ + *n* **b**. The series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ will $\frac{1}{(x+1)^{n+1}}$. {converge absolutely, converge conditionally diverge }
in part **b**. Since $\lim_{n \to \infty} \frac{n+1}{n} = 1$ then $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{n+1}{n}$ diverges by the AST. $+1$ = 1 then $\sum (-1)^{n+1}$ **c.** Give a reason for your claim in part **b**. Since $\lim_{n\to\infty} \frac{n+1}{n} = 1$ $\sum_{n=1}^{\infty}$ $\binom{n}{n}$ $(-1)^{n+1} \cdot \frac{n+1}{n}$ *n n n n* 1 $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{n+1}{n}$ has $\lim_{n \to \infty} (-1)^{n+1} \cdot \frac{n+1}{n} \neq 0$ ∞ \sum (1)ⁿ⁺ $(-1)^{n+1} \cdot \frac{n+1}{n+1} \neq 0$. (It diverges by oscillation to 1 and -1.) $(-1)^{n+1} \cdot \frac{n+1}{n}$ *n* Alternatively, the series $\sum_{n=1}^{\infty} (-1)^{n+1}$ *n n n* 1 $\sum_{n=1}^{\infty}$ (1)ⁿ⁺ $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{n+1}{n}$ diverges by the *n*th Term Test for Divergence. $(-1)^{n+1} \cdot \frac{n+1}{n+1}$ *n* Thus $\sum (-1)^{n+1}$ *n n* 1 **2.** Each alternating series below converges by the Alternating Series Test (AST). Determine if the convergence is conditional or absolute. $\sum_{n=1}^{\infty} \frac{(-1)^n 7n}{4n^3 - 3}$ will converge $\overline{\left(\frac{3}{\text{absolutely, conditionally}}\right)}$ ∞ *n* $(-1)^n 7$ *n* **a.** $\sum_{n=1}^{\infty} \frac{(-1)^n}{4n^3}$ $4n^3 - 3$ *n n* = *n* 1 $\sum_{n=1}^{\infty} \frac{7n}{4n^3 - 3}$ will $\frac{1}{2}$ with *b* $\frac{n}{3} = \frac{1}{2}$. 7 *n* $\frac{n}{n^3} = \frac{1}{n}$ the series $\sum_{n=1}^{\infty} \frac{1}{4n^3}$ $\sum_{n=1}$ 4 n^3 – 3 *n* {converge, diverge} {Comparison Test, Limit Comparison Test} 3 2 $a_n = \frac{7n}{4n^3 - 3}$ and $b_n = \frac{1}{n^2}$ 7 1 Provide the details of your claim below. Use $a_n = \frac{1}{4n^3}$ $n - 4n^3 - 3$ $\lim_{n \to \infty} \frac{a_n}{b} = \lim_{n \to \infty} \frac{7n}{4n^3 - 3} \cdot \frac{n^2}{4} = \frac{7}{4}$ $\sum_{n=1}^{\infty} \frac{7n}{4n^3 - 3}$ converges by the LCT. Since $\sum_{n=1}^{\infty} \frac{7}{4n^3}$ $\sum_{n=1}^{\infty} \frac{7n}{4n^3 - 3}$ converges, $\sum_{n=1}^{\infty} \frac{(-1)^n}{4n^3}$ $\sum_{n=1}^{\infty} \frac{(-1)^n 7n}{4n^3 - 3}$ converges absolutely. ∞ *n* 7 *n* 7 *n* $(-1)^n 7$ *n* Thus $\sum_{n=1}^{\infty} \frac{1}{4n^3}$ $\sum_{n=1}^{6} 4n^3 - 3$ *n* $\sum_{n=1}^{6} 4n^3 - 3$ *n* $4n^3 - 3$ *n n* = $\sum_{n=0}^{\infty}$ $\left(-1\right)^{n+1}$ *a* $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = \frac{1}{15} - \frac{1}{20} + \frac{1}{25} - \frac{1}{30} + \frac{1}{35} - \frac{1}{40} + \dots$ will converge $\frac{1}{3}$ absolutely conditionally **b.** $\sum (-1)^{n+1}$ $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ { absolutely, conditionally } 1 \sum_{a}^{∞} $\sum_{i=1}^{\infty}$ 1 $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} \frac{1}{5n+10}$ will $\frac{1}{\{ \text{converge, diverge} \}}$ by the $\frac{1}{\{ \text{Comparison Test}, \text{Limit Comparison Test} \}}$ with $b_n = \frac{1}{n}$. the series $\sum_{n=1}^{\infty} a_n$ $\frac{5n + 10}{ }$ {converge, diverge} {Comparison Test, Limit Comparison Test} Provide the details of your claim below. Use $a_n = \frac{1}{5n+10}$ and $b_n = \frac{1}{n}$

1 *n*

- $\lim_{n \to \infty} \frac{a_n}{b} = \lim_{n \to \infty} \frac{1}{5n+10}$. $n = \frac{1}{5}$ $\sum_{n=1}^{\infty} \frac{1}{5n+10}$ diverges by the LCT, $\sum_{n=1}^{\infty} \frac{(-1)}{5n+1}$ ∞ *n* 1 $\sum_{n=1}^{\infty} \frac{(-1)^n}{5n+1}$ converges conditionally. Thus $\sum_{n=1}$ 5*n* + 10 $\sum_{n=1}$ 5*n* $5n + 1$ = 1 $= 0$ and $a_n = \frac{1}{5n+10}$ decreases, ∞ *n* (Since $\lim_{n\to\infty} \frac{1}{5n+1}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{5n+1}$ converges by the AST. (-1) $5n + 10$ $\sum_{n=1}$ 5*n* $5n + 1$ = 1
- **3.** Report the two conditions for an alternating series $\sum b_n = \sum (-1)^{n+1}$ $n=1$ $\sum_{n=1} b_n = \sum_{n=1} (-1)^{n+1} a_n$ $\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} (-1)^{n+1} a_n$ $\sum_{n=1}^{n} b_n = \sum_{n=1}^{n} (-1)^{n+1} a_n$ to converge, where a_n is positive for all *n*.

i. $a_n \to 0$ as $n \to \infty$ (or $\lim_{n \to \infty} a_n = 0$), i.e. the *n*th Term Test for Divergence must not disqualify it.

ii. $\frac{a_n}{a_n}$ is non-increasing

4. Give an example of any kind of divergent alternating series. Hint: Think about your answer to Question 3.

$$
\sum_{k=0}^{\infty} (-1)^k = \sum_{k=0}^{\infty} (-1)^{k} \cdot 1
$$
 is one example.
$$
\sum_{k=0}^{\infty} (-1)^{k} \cdot 2
$$
 is another.
$$
\sum_{k=0}^{\infty} (-2)^{k} = \sum_{k=0}^{\infty} (-1)^{k} \cdot 2^{k}
$$
 is another.

$$
\sum_{k=0}^{\infty} (-1)^{k} \cdot k
$$
 is another. All of these examples are of the form
$$
\sum_{k=0}^{\infty} (-1)^{k} \cdot a_k
$$
 where $\lim_{n \to \infty} a_k \neq 0$ and, because of the *n*th Term Test for Divergence, each of these series must diverge.

5. Give an example of a divergent alternating series with the property that its *n*th term approaches 0. There are many correct answers. Hint: think of your answer to Question **3**. You may write it in long form (expanded form) or use sigma notation, but use correct notation.

It is easier to write this in long form:

If we wanted to use sigma notation (which is unnecessary and more challenging), we could write

$$
\sum_{k=1}^{\infty} b_k
$$
, where $b_k = \begin{cases} \frac{1}{k} & , k = 1, 3, 5, 7, ... \\ \frac{-1}{10^{k/2}} = \frac{-1}{\sqrt{10^k}} = (-1) \cdot \left(\frac{1}{\sqrt{10}}\right)^k , k = 2, 4, 6, 8, ... \end{cases}$

The series diverges because it is the sum of a harmonic series $\sum_{n=1}^{\infty}$ $\frac{1}{n}$ = 1+ - + - + - + - + ... = ∞ and a geometric series $-\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{a}} - \frac{1}{$ converge to the sum $\frac{-1/10}{1-1/10} = \frac{-1/10}{9/10} = -\frac{1}{9}$. Therefore, $\sum_{k=1}^{\infty} b_k = \infty - \frac{1}{9} = \infty$.

8. Use the Root Test for each.
\na. The series
$$
\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{8n^4}{2n^4 + n + 5}\right)^n
$$
 will $\lim_{n \to \infty} \frac{8}{n^3} \times 1$
\n $\lim_{n \to \infty} |\Delta_n| \stackrel{\frac{1}{\sim}}{\sim} \frac{1}{n}$ and $\lim_{n \to \infty} \frac{8n^4}{\sqrt{2n^4 + n + 5}} \bigg)^{1/2} = \frac{\frac{8}{3} \times 1}{\frac{\frac{8}{3} \times 1}{\frac{\frac{8}{3} \times 1 \times 1}{\$