Practice Questions from Section 10.5 and Section 10.6

Insert numbers or expressions with the correct variables in the boxes. Circle the correct choice in the word bank.

1. Consider the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{7 / 4}}$.
a. We can use the Comparison Test with $b_{n}=\frac{1}{n^{7 / 4}}$ to show the series $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{7 / 4}} \frac{\text { (converges.diverges\} }}{}$
b. Which is true for your choice of b_{n} ?
Circle one:
(i. $\frac{\sin ^{2} n}{n^{7 / 4}} \leq b_{n}$
ii. $b_{n} \leq \frac{\sin ^{2} n}{n^{7 / 4}}$
c. Complete, assuming b_{n} is what you wrote in the box in part a.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} b_{n} \text { will } \\
& \text { because } \underset{\boldsymbol{p} \text {-series with } \boldsymbol{p}=\mathbf{7 / 4}}{\mathbf{p}} \\
& \text { (Give a reason for your answer on how you know } \sum b_{n} \text { converges or diverges, } \\
& \text { such as } p \text {-series. harmonic series, geometric series, etc.) }
\end{aligned}
$$

2. Consider the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{3^{n}}$.
a. We can use the Comparison Test with $b_{n}=\frac{\left(\frac{\pi}{2}\right)}{3^{n}}$ to show the series $\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{3^{n}} \frac{{ }_{n}}{\text { (converges. diverges? }}$
b. Which is true for your choice of b_{n} ?
Circle one: i. $\frac{\tan ^{-1} n}{3^{n}} \leq b_{n}$
ii. $\quad b_{n} \leq \frac{\tan ^{-1} n}{3^{n}}$
c. Complete, assuming b_{n} is what you wrote in the box in part \mathbf{a}.

$$
\sum_{n=1}^{\infty} b_{n} \text { will } \underset{\{\text { sconverge.diverge\} }}{ }
$$ because geometric series with $r=1 / 3$

(Give a reason for your answer on how you know $\sum b_{n}$ converges or diverges, such as p-series, harmonic series geometric series, etc.)
3. Consider the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{n}{n^{2}-\cos ^{2} n}$.
a. We can use the Comparison Test with $b_{n}=\frac{n}{n^{2}}=\frac{1}{n}$ to show the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}-\cos ^{2} n} \frac{}{\text { \{converge diverges \} }}$
b. Which is true for your choice of b_{n} ?
ii. $b_{n} \leq \frac{n}{n^{2}-\cos ^{2} n}$
Circle one:
i. $\frac{n}{n^{2}-\cos ^{2} n} \leq b_{n}$

$$
\frac{1}{n}<\frac{n}{n^{2}-\cos ^{2} n}
$$

$n^{2}>n^{2}-\cos ^{2} n$ so $\frac{n}{n^{2}}<\frac{n}{n^{2}-\cos ^{2} n}$
c. Complete, assuming b_{n} is what you wrote in the box in part \mathbf{a}.

$$
\sum_{n=1}^{\infty} b_{n} \text { will } \underbrace{}_{\text {\{conver, diverges }} \quad \text { because } \frac{\text { harmonic series }}{\text { (Give a reason for your answer on how you know } \sum b_{n} \text { converges or diverges, }} \begin{aligned}
& \text { such as } p \text {-serie harmonic series, eometric series, etc.) }
\end{aligned}
$$

4. Consider the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{6 n^{2}+n+7}{n^{5}+2 n}$.
i. We can use the Limit Comparison Test with $b_{n}=\frac{n^{2}}{n^{5}}=\frac{1}{n^{3}}$ to show the series $\sum_{n=1}^{\infty} \frac{6 n^{2}+n+7}{n^{5}+2 n}$ converges. Hiverges s
ii. Complete, assuming b_{n} is what you wrote in the box in part \mathbf{i}.

$$
\sum_{n=1}^{\infty} b_{n} \text { will } \overbrace{\text { converge, liverge\} }}
$$

$$
\text { because } \underbrace{\boldsymbol{p} \text {-series with } \boldsymbol{p}=\mathbf{3}}_{\text {Give a reason for vour answer }}
$$

(Give a reason for your answer on how you know $\sum b_{n}$ converges or diverges, such sp-series. harmonic series. geometric series. etc.)
The limit $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=6$.
5. Consider the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{5 n^{5}+8 n^{2}}{\sqrt{n^{12}+8 n^{2}}}$.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\left(6 n^{2}+n+7\right)}{\left(n^{5}+2 n\right)} \cdot n^{3}=6
$$

i. We can use the Limit Comparison Test with $b_{n}=\frac{n^{5}}{n^{6}}=\frac{1}{n}$ to show the series $\sum_{n=1}^{\infty} \frac{5 n^{5}+8 n^{2}}{\sqrt{n^{12}+8 n^{2}}} \frac{}{\text { \{converged diverges) }}$
ii. Complete, assuming b_{n} is what you wrote in the box in part \mathbf{i}.

The limit $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=5$.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{5 n^{5}+8 n^{2}}{\sqrt{n^{12}+8 n^{2}}} \cdot{ }^{n}=5
$$

6. Consider the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=4}^{\infty} \frac{1}{7 \sqrt{n^{3}-4 n+16}}$.
i. We can use the Limit Comparison Test with $b_{n}=\frac{1}{n^{3 / 2}}$ to show the series $\sum_{n=4}^{\infty} \frac{1}{7 \sqrt{n^{3}-4 n+16}} \frac{\text { Converge, diverges }}{}$
ii. Complete, assuming b_{n} is what you wrote in the box in part \mathbf{i}.

$$
\sum_{n=1}^{\infty} b_{n} \text { will } \underset{\text { converg, diverge) }}{ } \text { because } \frac{\boldsymbol{p} \text {-series with } \boldsymbol{p}=\mathbf{1 . 5}}{\begin{array}{c}
\text { (Give a reason for your answer on how you know } \sum b_{n} \text { converges or diverges, } \\
\text { such s } p \text {-series. Darmonic series. geometric series. etc.) }
\end{array}}
$$

The limit $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{1}{7}$. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{7 \sqrt{n^{3}-4 n+16}} \cdot n^{3 / 2}=\frac{1}{7}$
7. Suppose $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=\frac{2}{1}-\frac{3}{2}+\frac{4}{3}-\frac{5}{4}+\frac{6}{5}-\frac{7}{6}+\ldots$
a. What is $a_{n} ? a_{n}=\frac{n+1}{n}$
b. The series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ will \qquad .
c. Give a reason for your claim in part b. Since $\lim _{n \rightarrow \infty} \frac{n+1}{n}=1$ then $\sum_{n=1}^{\infty}(-1)^{n+1} \cdot \frac{n+1}{n}$ diverges by the AST. Alternatively, the series $\sum_{n=1}^{\infty}(-1)^{n+1} \cdot \frac{n+1}{n}$ has $\lim _{n \rightarrow \infty}(-1)^{n+1} \cdot \frac{n+1}{n} \neq 0$. (It diverges by oscillation to 1 and -1 .) Thus $\sum_{n=1}^{\infty}(-1)^{n+1} \cdot \frac{n+1}{n}$ diverges by the nth Term Test for Divergence.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} b_{n} \text { will } \\
& \text { because } \quad \underset{\text { harmonic series }}{\text { ha }} \\
& \text { (Give a reason for your answer on how you know } \sum b_{n} \text { converges or diverges, } \\
& \text { such as } p \text {-serie harmonic series. yeometric series, etc.) }
\end{aligned}
$$

8. Each alternating series below converges by the Alternating Series Test (AST).

Determine if the convergence is conditional or absolute.
a. $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} 7 n}{4 n^{3}-3}$ will converge absolutel), conditionally because
the series $\sum_{n=1}^{\infty} \frac{7 n}{4 n^{3}-3}$ will \qquad by the \qquad $\frac{n}{n^{3}}=\frac{1}{n^{2}}$
Provide the details of your claim below. Use $a_{n}=\frac{7 n}{4 n^{3}-3}$ and $b_{n}=\frac{1}{n^{2}}$
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{7 n}{4 n^{3}-3} \cdot n^{2}=\frac{7}{4}$

Thus $\sum_{n=1}^{\infty} \frac{7 n}{4 n^{3}-3}$ converges by the LCT. Since $\sum_{n=1}^{\infty} \frac{7 n}{4 n^{3}-3}$ converges, $\sum_{n=1}^{\infty} \frac{(-1)^{n} 7 n}{4 n^{3}-3}$ converges absolutely.
b. $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=\frac{1}{15}-\frac{1}{20}+\frac{1}{25}-\frac{1}{30}+\frac{1}{35}-\frac{1}{40}+\ldots$ will converge \qquad the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{5 n+10}$ will $\frac{\text { \{converge, diverge }\}}{}$ by the $\underset{\{\text { Comparison Tes Limit Comparison Test }\}}{ }$ with $b_{n}=\frac{1}{n}$.

Provide the details of your claim below. Use $a_{n}=\frac{1}{5 n+10}$ and $b_{n}=\frac{1}{n}$
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{5 n+10} \cdot{ }^{n}=\frac{1}{5}$
Thus $\sum_{n=1}^{\infty} \frac{1}{5 n+10}$ diverges by the LCT, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{5 n+1}$ converges conditionally.
(Since $\lim _{n \rightarrow \infty} \frac{1}{5 n+10}=0$ and $a_{n}=\frac{1}{5 n+10}$ decreases, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{5 n+1}$ converges by the AST.)
9. Report the two conditions for an alternating series $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ to converge, where a_{n} is positive for all n.

i. $\quad a_{n}$ is non-increasing

ii. $a_{n} \rightarrow 0$ as $n \rightarrow \infty\left(\right.$ or $\left.\lim _{n \rightarrow \infty} a_{n}=0\right)$
10. Give an example of a divergent alternating series with the property that its nth term approaches 0 . There are many correct answers. Hint: think of your answer to Question 9.
You may write it in long form (expanded form) or use sigma notation, but use correct notation.
$1-\frac{1}{10}+\frac{1}{2}-\frac{1}{100}+\frac{1}{3}-\frac{1}{1000}+\frac{1}{4}-\frac{1}{10^{4}}+\frac{1}{5}-\frac{1}{10^{5}}+\frac{1}{6}-\frac{1}{10^{6}}+\ldots$

