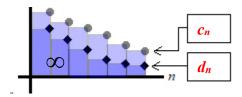
Key to Practice Questions from Section 10.5

- Complete the boxes and blanks. You can just circling the correct choices in the word bank.
 - To use the Direct Comparison Test to show the series $\sum_{n=1}^{\infty} c_n$ diverges,

we find a $\underbrace{\sum_{\text{convergent divergent}}^{\infty}}$ series $\sum_{n=1}^{\infty} d_n$ and must show that, for some large enough n, we have $c_n = \frac{1}{(1 + c_n)^n} d_n$.

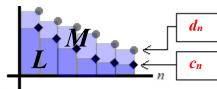
ii. Below is a plot of (n, c_n) and (n, d_n) . Insert in the box which is c_n and which is d_n .



To use the Direct Comparison Test to show the series $\sum_{n=1}^{\infty} c_n$ converges,

we find a ______ series $\sum_{n=1}^{\infty} d_n$ and must show that, for some large enough n, we have $c_n \in \{(\leq) \geq\}$

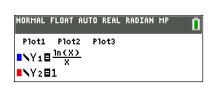
ii. Below is a plot of (n, c_n) and (n, d_n) . Insert in the box which is c_n and which is d_n .

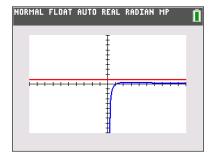


Suppose Finn decides to use the Direct Comparison Test to investigate the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$.

Complete the boxes. Finn chooses to compare $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ to the series $\sum_{n=1}^{\infty} 1$.

He tells you, "Since $\ln n < n$, then $\frac{\ln n}{n} < \frac{n}{n} = 1$ " You respond: (A.)



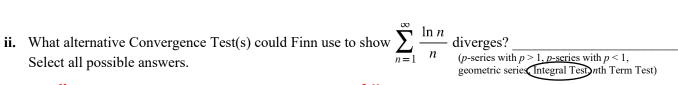


Finn goes on to say "We know that $\sum_{n=1}^{\infty} 1 = \infty$ because of the ______."

(Give a reason for your answer such as harmonic series, p. series with p > p-series with p < 1, geometric series with Term Test for Divergence etc.

He concludes "Therefore by the Direct Comparison Test we know $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ diverges."

A series with a sum smaller than one that diverges could have either a finite sum (converge) or infinite sum (diverge).

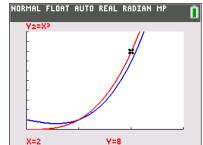


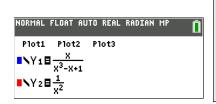
$$\sum_{n=1}^{\infty} \frac{\ln n}{n} \text{ diverges by the Integral Test since } \int_{1}^{\infty} \ln x \cdot \frac{1}{x} dx = \lim_{b \to \infty} \frac{\ln^2 b}{2} = \infty.$$

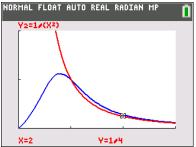
d. i. Suppose Gil decides to use the Direct Comparison Test to investigate the series
$$\sum_{n=1}^{\infty} \left(\frac{n}{n^3 - n + 1} \right)$$
.

Complete the boxes. Gil compares
$$\sum_{n=1}^{\infty} \left(\frac{n}{n^3 - n + 1} \right)$$
 to the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ This result brought me

Gil tells you, "Since $n^3 - n + 1 \le n^3$ for $n \ge 1$, then $\frac{1}{n^2} = \frac{n}{n^3} \le \frac{n}{n^3 - n + 1}$ " You say: (A)







Gil concludes "Therefore by the Direct Comparison Test we know $\sum_{n=1}^{\infty} \left(\frac{n}{n^3-n+1}\right)$ converges."

You respond: A. Gil's conclusion is fishy.

A series with a sum larger than one that converges could have either a finite sum (converge) or infinite sum (diverge).

Select all possible answers.

$$\sum_{n=1}^{\infty} \left(\frac{n}{n^3 - n + 1}\right) \text{ converges by the Limit Comparison Test with } a_n = \frac{n}{n^3 - n + 1} \text{ and } b_n = \frac{1}{n^2} \text{ .}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_n}{1} \cdot \frac{1}{b_n} = \lim_{n \to \infty} \frac{n}{n^3 - n + 1} \cdot \frac{n^2}{1} = \text{1. Since } \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges (p-series, p = 2),}$$
we have by the LCT that
$$\sum_{n=1}^{\infty} \left(\frac{n}{n^3 - n + 1}\right) \text{ converges.}$$

2. Consider the series $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^{7/4}}$. Complete the boxes and blanks.

a.
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^{7/4}} \text{ will } \underbrace{\frac{\text{converge diverge}}{}}$$

- Complete the box: We can use the Direct Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^{7/4}} = 1$ to validate our claim in part **a**.
- Assuming the contents of the dashed box are same as the nth term of your series in part b, which choice is true?

Circle one and complete the box: (i.)
$$\frac{\sin^2 n}{n^{7/4}} \le \left\| \frac{1}{n^{7/4}} \right\|$$
 (ii.)
$$\left\| \frac{\sin^2 n}{n^{7/4}} \right\| \le \frac{\sin^2 n}{n^{7/4}}$$

ii.
$$\| \| \le \frac{\sin^2 n}{n^{7/4}}$$

d. Complete, assuming the series in the dashed box below is what you wrote in the box in part **b**.

$$\sum_{n=1}^{\infty} \frac{1}{n^{7/4}}$$
 will will will will Give a reason for your answer such as harmonic series with $p > 1$.

(Give a reason for your answer such as harmonic series p -series with $p > 1$.)

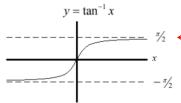
 p -series with $p < 1$, geometric series, n th Term Test for Divergence)

3. Consider the series $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{3^n}$. Complete the boxes and blanks.

a. $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{3^n} \text{ will } \frac{1}{(\text{converge, Miverge})}$

higher value, i.e., $\frac{2}{3^n}$, since $\pi/2$ is the least upper bound of $\tan^{-1}n$.

b. Complete the box: We can use the Direct Comparison Test with



- $\frac{\pi/2}{}$ to validate our claim in part **a**.
- Assuming the contents of the box are same as the *n*th term of your series in part **b**, which choice is true?

Circle one and complete the box:

$$\mathbf{i.} \quad \frac{\tan^{-1} n}{3^n} \leq \boxed{\frac{\pi/2}{3^n}}$$

ii.
$$\leq \frac{\tan^{-1} n}{3^n}$$

Complete, assuming the series in the box below is what you wrote in the box in part b.

because Geometric series with r = 1/3

(Give a reason for your answer such as harmonic series, p-series with p > 1, *p*-series with p < 1 (geometric series) *n*th Term Test for Divergence)

ries
$$\sum_{n=1}^{\infty} \frac{n}{2n^2 - \cos^2 n}$$
. C

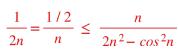
4. Consider the series
$$\sum_{n=1}^{\infty} \frac{n}{2n^2 - \cos^2 n}$$
. Complete the boxes and blanks.

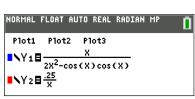
$$\frac{2n^2 - \cos^2 n \le 2n^2}{\frac{1}{2n^2} \le \frac{1}{2n^2 - \cos^2 n}}$$

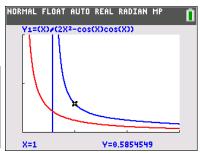
a.
$$\sum_{n=1}^{\infty} \frac{n}{2n^2 - \cos^2 n}$$
 will {converge diverge}

$$\frac{n}{2n^2} \le \frac{n}{2n^2 - \cos^2 n}$$

1/2 could be replaced by any lower value such as 1/4, i.e. $\frac{1/4}{n}$ since we want a function below $\frac{n}{2n^2 - \cos^2 n}$.







- Complete the box: We can use the Direct Comparison Test with $\sum_{n=1}^{\infty} \frac{1/4}{n}$ to validate our claim in part **a**.
- Assuming the contents of the dashed box are same as the *n*th term of your series in part **b**, which choice is true?

Circle one and complete the box: i.
$$\frac{n}{2n^2 - \cos^2 n} \le \frac{1/4}{n} \le \frac{n}{2n^2 - \cos^2 n}$$

ii.
$$\left| \frac{1/4}{n} \right| \le \frac{n}{2n^2 - \cos^2 n}$$

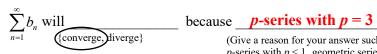
d. Complete, assuming the series in the dashed box below is what you wrote in the box in part **b**.

$$\sum_{n=1}^{\infty} \frac{1/4}{n} \quad \text{will} \quad \text{because} \quad \underline{\text{Harmonic Series}}$$

$$\text{(Give a reason for your answer such a charmonic series, } p\text{-series with } p > 1,$$

$$p\text{-series with } p < 1, \text{ geometric series, } n\text{th Term Test for Divergence})}$$

- Consider the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{6n^2 + n + 7}{n^5 + 2n}$. Complete the boxes and blanks.
 - We can use the Limit Comparison Test with $b_n = \frac{1}{n^3}$ to show $\sum_{n=1}^{\infty} \frac{6n^2 + n + 7}{n^5 + 2n}$ will $\frac{\text{converge, diverge}}{\text{converge}}$
 - **b.** Complete, assuming b_n is what you wrote in the box in part **a**.



because
$$p$$
-series with $p = 3$

(Give a reason for your answer such as harmonic series p-series with p > 1) p-series with p < 1, geometric series, nth Term Test for Divergence)

The imit
$$\lim_{n\to\infty} \frac{a_n}{b_n} = 6$$

The imit
$$\lim_{n\to\infty} \frac{a_n}{b_n} = 6$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{6n^2 + n + 7}{n^5 + 2n} \cdot \frac{n^3}{1} = \lim_{n\to\infty} \frac{6n^5}{n^5} = 6$$

6.	Consider the series $\sum_{i=1}^{\infty} a_i$	$a_n = \sum_{n=1}^{\infty} \frac{5n^5 + 8n^3}{\sqrt{n^{12} + 8n^3}}$	$\frac{1}{2}$. Complete the	boxes and blanks.
----	---	--	------------------------------	-------------------

a. We can use the Limit Comparison Test with
$$b_n = \frac{1}{n}$$
 to show $\sum_{n=1}^{\infty} \frac{5n^5 + 8n^2}{\sqrt{n^{12} + 8n^2}}$ will $\frac{1}{\{\text{converge}, \text{diverge}\}}$

b. Complete, assuming
$$b_n$$
 is what you wrote in the box in part **a**.

The limit
$$\lim_{n\to\infty} \frac{a_n}{b_n} = 5$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{1}{b_n} \lim_{n\to\infty} \frac{5n^5 + 8n^2}{\sqrt{n^{12} + 8n^2}} \cdot \frac{n}{1} = \lim_{n\to\infty} \frac{5n^6}{n^6} = 5$$

7. Consider the series
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{7}{\sqrt{n^3 + 4n + 16}}$$
. Complete the boxes and blanks.

a. We can use the Limit Comparison Test with
$$b_n = \frac{1}{n^{3/2}}$$
 to show $\sum_{n=1}^{\infty} a_n$ will $\frac{1}{\{\text{converge}\}}$

b. Complete, assuming b_n is what you wrote in the box in part **a**.

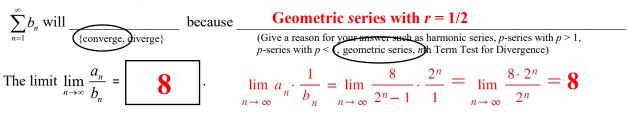
$$\sum_{n=1}^{\infty} b_n \text{ will } \underbrace{\sum_{\text{(Give a reason for your answer such as harmonic series, } p\text{-series with } p = 3/2}_{\text{(Give a reason for your answer such as harmonic series, } nth Term Test for Divergence)}$$
The limit $\lim_{n \to \infty} \frac{a_n}{b_n} = \boxed{7}$

$$\lim_{n \to \infty} a_n \cdot \frac{1}{b_n} = \lim_{n \to \infty} \frac{7}{\sqrt{n^3 + 4n + 16}} \cdot \frac{n^{3/2}}{1} = \boxed{7}$$

8. Consider the series
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{8}{2^n - 1}$$
. Complete the boxes and blanks.

a. We can use the Limit Comparison Test with
$$b_n = \frac{1}{2^n} = \left(\frac{1}{2}\right)^n$$
 to show $\sum_{n=1}^{\infty} a_n$ will {converge, diverge}

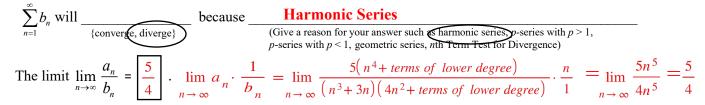
b. Complete, assuming b_n is what you wrote in the box in part **a**.



9. Consider the series
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{5(n-1)(n+4)(n+3)(n+2)}{(n^3+3n)(2n+1)^2}$$
. Complete the boxes and blanks.

a. We can use the Limit Comparison Test with
$$b_n = \frac{1}{n}$$
 to show $\sum_{n=1}^{\infty} a_n$ will $\frac{1}{\{\text{conve}(g_e, \text{diverge})\}}$

b. Complete, assuming b_n is what you wrote in the box in part **a**.



- 10. Consider the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{9e^n + 4}{2e^{5n} 2}$. Complete the boxes and blanks.
 - **a.** We can use the Limit Comparison Test with $b_n = \frac{1}{e^{4n}} = \left(\frac{1}{e^4}\right)^n$ to show $\sum_{n=1}^{\infty} a_n \frac{\text{will}}{\{\text{converge}, \text{Niverge}\}}$
 - **b.** Complete, assuming b_n is what you wrote in the box in part **a**.

$$\sum_{n=1}^{\infty} b_n \text{ will}$$
 because Geometric Series with $r = e^{-4}$ (You could also use Integral Test)

(Give a reason for your answer such as harmonic series, p -series with $p > 1$, p -series with $p < 1$, (geometric series, p -th Term Test for Divergence)

The limit
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \boxed{\frac{9}{2}}$$

$$\lim_{n \to \infty} a_n \cdot \frac{1}{b_n} = \lim_{n \to \infty} \frac{9e^{n} + 4}{2e^{5n} - 2} \cdot \frac{e^{4n}}{1} = \lim_{n \to \infty} \frac{9e^{5n} + 4e^{4n}}{2e^{5n} - 2} = \lim_{n \to \infty} \frac{9e^{5n}}{2e^{5n}} = \frac{9}{2}$$