Practice Questions from Section 10.4

For what values of p does Z—-—— converge?
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You can check with a grapher:
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You can check with a grapher if you need convinced.
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4. Suppose Z a, is any series. Circle True or False. If False, give a counterexample which shows it is False. If True, leave blank.
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a. True(False) If 11_1;2 a, =0, then Zak converges. H.'MMfC S!f:(.l or any p-ffﬂ'l.f k”!‘\ 'P,&( /

alse If the limit of the sequence of partial sums S, exists, i.e., lim S, = lim Za,‘ =L < m, then Za,( =L
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where L is some finite number.
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This escenhally is what it means for a series b convene.

¢. True{ False) If the limit of the sequence ax exists, i.e. llm d, = L, then the series ZGk converges.
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d. Tru If Zak converges, then the sequence of partial sums S, approaches 0, i.e, Ilm Sy = llm Zak =0.

Use the senes in Quashon 3

or any geomeinc serres with [r[<| and a0

30

40

30



; 2 560n" -4" +11" . ; :
5. Determine whether Z T converges or diverges by answering the questions below.
n=l n

a. Circle the correct answer below.

A. The series is the sum of a geometric series with | 7 | < 1 and the harmonic series.
B. The series is the sum of a geometric series with | » | < 1 and a p-series with p < 1.
The series is the sum of a geometric series with | » | < 1 and a p-series with p > 1.
D. The series is the sum of a geometric series with | r | > 1 and the harmonic series.
E. The series is the sum of a geometric series with | » | > 1 and a p-series with p < 1.
F.  The series is the sum of a geometric series with | #| > 1 and a p-series with p > 1.
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as the sum of a geometric series and a p-series (or harmonic series).
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for x> 1 we can use the Integral Test to show Z converges or diverges,
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