- 1. For what values of p does $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converge? For what values of r does $\sum_{k=1}^{\infty} ar^{k-1}$ converge?
- Shown to the right is a plot of the terms a_n and the *n*th partial sums S_n for the series $\sum_{k=0}^{\infty} \left(1 \frac{1}{k}\right)^k$.
 - a. Circle the correct choice: We know that $\lim_{k \to \infty} \left(1 \frac{1}{k}\right)^{\kappa}$ {doe, does not} equal 0.

This means by the nth Term Test for Divergence that

b. The plot shows $\lim_{k\to\infty} \left(1-\frac{1}{k}\right)^k \approx 0.3678794411714423215955237701614608674458111310317678345078368016974614957448998034$

What is the exact value of this number? $\lim_{k \to \infty} \left(1 - \frac{1}{k} \right)^k = \left| \begin{array}{c} \\ \\ \end{array} \right|$

You can check with a grapher:

0.3678794412

Shown to the right is a plot of the terms a_n and the *n*th partial sums S_n for the series $\sum_{k=1}^{\infty} \left(1 - \frac{1}{10}\right)^k$.

a. Circle the correct choice: We know that $\lim_{k\to\infty} \left(1-\frac{1}{10}\right)^k_{\{\text{does, ploes not}\}}$ equal 0,

This means by the nth Term Test for Divergence that

b. The series $\sum_{k=1}^{\infty} \left(1 - \frac{1}{10}\right)^k = \frac{9}{6}$ Write in the box an exact number or DNE or ∞ or $-\infty$.

You can check with a grapher if you need convinced.

MINDOM Xmin=0 Xmax=50 Xscl=10 Ymin=0 Ymax=10 △X=0.18939393939394 TraceStep=0.378787878787...

- 4. Suppose $\sum a_k$ is any series. Circle True or False. If False, give a counterexample which shows it is False. If True, leave blank.
 - a. True False If $\lim_{k\to\infty} a_k = 0$, then $\sum_{k=1}^{\infty} a_k$ converges. Harmonic Series or any p-series with $p \le 1$
 - If the limit of the sequence of partial sums S_n exists, i.e., $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{k=1}^n a_k = L < \infty$, then $\sum_{k=1}^{\infty} a_k = L$, where L is some finite number. b True False

This essentially is what it means for a series to converge.

If the limit of the sequence a_k exists, i.e. $\lim_{k\to\infty} a_k = L$, then the series $\sum_{k=0}^{\infty} a_k$ converges. c. True False

d. True False If $\sum_{k=1}^{\infty} a_k$ converges, then the sequence of partial sums S_n approaches 0, i.e, $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{k=1}^n a_k = 0$.

use the series in Question 3
or any geometric series with |r|<| and a #0

From the graphs we expect that $\sum_{n=1}^{\infty} \frac{24}{1+n^2} = \int_{\{-,<,>\}}^{\infty} \int_{1+x^2}^{24} dx$

