1. For what values of p does $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ converge? $p>1$ For what values of r does $\sum_{k=1}^{\infty} a r^{k-1}$ converge? $|r|<1$
2. Shown to the right is a plot of the terms a_{n} and the nth partial sums S_{n} for the series $\sum_{k=1}^{\infty}\left(1-\frac{1}{k}\right)^{k}$.
a. Circle the correct choice: We know that $\lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)^{k} \frac{(\text { door }}{\text { does not })}$ equal 0 .

This means by the nth Term Test for Divergence that
the series $\sum_{k=1}^{\infty}\left(1-\frac{1}{k}\right)^{k} \frac{}{\{\text { convergediverges) is nonconclusive\} }}$.

b. The plot shows $\lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)^{k} \approx 0.3678794411714423215955237701614608674458111310317678345078368016974614957448998034$

What is the exact value of this number? $\lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)^{k}=e^{-1} \quad \begin{aligned} & \lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right) \\ & \text { Write in the box an exact number or DNE or } \infty \text { or }-\infty\end{aligned}$
You can check with a grapher:

$$
\begin{array}{|l|}
\hline e^{-1}
\end{array} 0.3678794412
$$

3. Shown to the right is a plot of the terms a_{n} and the nth partial sums S_{n} for the series $\sum_{k=1}^{\infty}\left(1-\frac{1}{10}\right)^{k}$.
a. Circle the correct choice: We know that $\lim _{k \rightarrow \infty}\left(1-\frac{1}{10}\right)^{k}$ (does. does not? equal 0 ,

This means by the nth Term Test for Divergence that
the series $\sum_{k=1}^{\infty}\left(1-\frac{1}{10}\right)^{k} \frac{\text { \{converges, diverges is nonconclusive) }}{}$

b. The series $\sum_{k=1}^{\infty}\left(1-\frac{1}{10}\right)^{k}=\square$ Write in the box an exact number or DNE or ∞ or $-\infty$.

You can check with a grapher if you need convinced.

4. Suppose $\sum_{k=1}^{\infty} a_{k}$ is any series. Circle True or False. If False, give a counterexample which shows it is False. If True, leave blank.
a. True False If $\lim _{k \rightarrow \infty} a_{k}=0$, then $\sum_{k=1}^{\infty} a_{k}$ converges. Harmonic Series or any p-series with $p \leqslant 1$
b True False If the limit of the sequence of partial sums S_{n} exists, ie., $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=L<\infty$, then $\sum_{k=1}^{\infty} a_{k}=L$,

This essentially is what it means for a series to converge.

c. True False If the limit of the sequence a_{k} exists, ie. $\lim _{k \rightarrow \infty} a_{k}=L$, then the series $\sum_{k=1}^{\infty} a_{k}$ converges.

Use the series in Question 3
5. Determine whether $\sum_{n=1}^{\infty} \frac{560 n^{4} \cdot 4^{n}+11^{n}}{n^{4} 11^{n}}$ converges or diverges by answering the questions below.
a. Circle the correct answer below.
A. The series is the sum of a geometric series with $|r|<1$ and the harmonic series.
B. The series is the sum of a geometric series with $|r|<1$ and a p-series with $p<1$.
C. The series is the sum of a geometric series with $|r|<1$ and a p-series with $p>1$.
D. The series is the sum of a geometric series with $|r|>1$ and the harmonic series.
E. The series is the sum of a geometric series with $|r|>1$ and a p-series with $p<1$.
F. The series is the sum of a geometric series with $|r|>1$ and a p-series with $p>1$.
b. Write $\sum_{n=1}^{\infty} \frac{560 n^{4} \cdot 4^{n}+11^{n}}{n^{4} 11^{n}}$ as the sum of a geometric series and a p-series (or harmonic series).

$n=1$
c. Circle the correct choice and fill in the blanks: The geometric series has $r=\frac{4}{11}$ and will and the p-series (or harmonic series) has $p=4$ and will (converge diverge).
Thus the series $\sum_{n=1}^{\infty} \frac{560 n^{4} \cdot 4^{n}+11^{n}}{n^{4} 11^{n}}$ will \qquad .
6. Because $f(x)=\frac{24}{1+x^{2}}$ is for $x \geq 1$ we can use the Integral Test to show $\sum_{n=1}^{\infty} \frac{24}{\text { increasing decreasing }}$ converges or diverges.
a. The series will because $\int_{1}^{\infty} \frac{24}{1+x^{2}} d x=6 \pi$. Write in the box an exact number or DNE or ∞ or $-\infty$.
b. Show work below using correct limit notation:
$\int_{1}^{\infty} \frac{24}{1+x^{2}} d x=24 \int_{1}^{\infty} \frac{24}{1+x^{2}} d x=24 \lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{1+x^{2}} d x$

18.85
c. Shown below is a plot of a_{n} and S_{n} for the series $\sum_{n=1}^{\infty} \frac{24}{1+n^{2}}$, as well as the area representing $\int_{1}^{\infty} \frac{24}{1+x^{2}} d x$.

Circle the best choice:
From the graphs we expect that $\sum_{n=1}^{\infty} \frac{24}{1+n^{2}} \frac{>}{\{=,<,>\}} \int_{1}^{\infty} \frac{24}{1+x^{2}} d x$
18.85

