la. $r=c \operatorname{se} \theta$

$$
\begin{gathered}
r=\frac{1}{\sin \theta} \\
r \sin \theta=1 \\
y=1
\end{gathered}
$$

Check w/ grapher.

1d. $r=\frac{2 \csc \theta}{\cot \theta+r \cos \theta}$

$$
\begin{aligned}
& r=2 \csc \theta \cdot \frac{1}{\cot \theta+r \cos \theta} \\
& r=2 \cdot \frac{1}{\sin \theta} \cdot \frac{1}{(\cot \theta+r \cos \theta)}
\end{aligned}
$$

So

$$
r \sin \theta(\cot \theta+r \cos \theta)=2
$$

$$
y \cdot\left(\frac{x}{y}+x\right)=2
$$

Distribute:

$$
\begin{aligned}
& y \cdot \frac{x}{y}+x y=2 \\
& x+x y=2 \\
& x y=2-x \\
& y=\frac{2-x}{x} \ln \frac{2}{x}-1
\end{aligned}
$$

1e. $r^{2} \cos \theta+r \tan \theta=\sec \theta$
Multiply all terms by $\frac{l}{r}$

$$
\begin{aligned}
r \cos \theta+\tan \theta & =\frac{1}{r \cos \theta} \\
x+\frac{y}{x} & =\frac{1}{x} \\
\frac{y}{x} & =\frac{1}{x}-x
\end{aligned}
$$

Multiply all terms by x
Checker er $y=1-x^{2}$
olgmp

$$
\text { If. } \begin{aligned}
r^{2} & =\sec ^{2} \theta \tan \theta \\
r^{2} & =\frac{1}{\cos ^{2} \theta} \frac{\sin \theta}{\cos \theta}
\end{aligned}
$$

$$
r^{2} \cos ^{2} \theta \cdot \cos \theta=\sin \theta
$$

Multiply both sides by r

$$
\begin{gathered}
r^{2} \cos ^{2} \theta \cdot r \cos \theta=r \sin \theta \\
x^{2} \cdot x=y \\
y=x^{3}
\end{gathered}
$$

check w/ gather.
2. Given the Cartesian equation in terms of x and y, write the polar equation in terms of r and θ.

Your equation should begin with " $r=$ "
a. $\quad x^{2}+y^{2}=x+y$

$$
\begin{aligned}
& r^{2}=r \cos \theta+r \sin \theta \\
& r=\cos \theta+\sin \theta
\end{aligned}
$$

b. $x^{2}\left(x^{2}+y^{2}\right)=y^{2}$

$$
\begin{aligned}
\left(x^{2}+y^{2}\right) & =\frac{y^{2}}{x^{2}} \\
r^{2} & =\tan ^{2} \theta \quad \text { Take square roots of both sides. } \\
r & =\tan \theta
\end{aligned}
$$

c. $y=3-2 x$
$r \sin \theta=3-2 r \cos \theta$
$r \sin \theta+2 r \cos \theta=3$
$r(\sin \theta+2 r \cos \theta)=3$

$$
r=\frac{3}{2 \cos \theta+\sin \theta}
$$

3. Recall the area from $\theta=\alpha$ to $\theta=\beta$ inside a polar graph is $\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta$
a. Find the exact area of the region inside one leaf of the 5-leaved rose $r=5 \cos 5 \theta$ You can use the FNINT command, but provide an exact area.

Solve when $r=5 \cos 5 \theta=0$.
The smallest negative value is the solution to

$$
5 \theta=-\frac{\pi}{2}
$$

Divide both sides by 5: $\theta=-\frac{\pi}{10}$
The smallest positive value is the solution to

$$
5 \theta=\frac{\pi}{2} .
$$

Divide both sides by 5: $\theta=\frac{\pi}{10}$

We can also solve this graphically.
Sketch a cosine graph $y=5 \cos 5 \theta$. There are 5 cycles in one interval of $[0,2 \pi]$, so a first cycle happens on $\left[0, \frac{2 \pi}{5}\right]$.
We can sketch one petal in the polar grapher if we set $\theta \min =-\frac{\pi}{10}$ and $\theta \max =\frac{\pi}{10}$.

b. Set up the integral to calculate the area of the region inside the inner loop of the limaçon $r=\sqrt{2}-2 \sin \theta$. Use the FNINT command to find the area and approximate it the area to two decimal places.
To find the integration limits, find where $r=\sqrt{2}-2 \sin \theta=0$ where $0 \leq \theta<2 \pi$, since this will be where the inner loop starts and ends. TIP: The dashed lines in the above graph are the polar equations $\theta=\alpha$ and $\theta=\beta$, where α and β are the lower and upper limits of integration. You can enter these values in your polar grapher as $\theta_{\text {min }}$ and θ max to check that you have sketched only the inner loop. Solve $r=\sqrt{2}-2 \sin \theta=0$ graphically or algebraically.

$$
\sin \theta=\frac{\sqrt{2}}{2}
$$

$$
\theta=\frac{\pi}{4}, \frac{3 \pi}{4}
$$

$r_{1} \mathrm{E} \sqrt{2}-2 \sin (\theta)$
NORMAL FLOAT AUTO REAL RADIAN MP \]

$\int_{\pi / 4}^{3 \pi / 4}\left(.5 r_{1}^{2}\right) d \theta$
0.1415926536
3. The arc length from $\theta=0$ to $\theta=11$ of a polar spiral $r=6 \theta^{2}$ is given by $\int_{0}^{11} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$.

Report the arc length correct to the nearest whole number.
You can use the FNINT command. Round to the nearest whole number.

$$
\begin{aligned}
& r=6 \theta^{2} \\
& \frac{d r}{d \theta}=12 \theta
\end{aligned}
$$

$$
\mid \int_{\theta}^{11}\left(\sqrt{\left(6 \theta^{2}\right)^{2}+(12 \theta)^{2}}\right) d \theta
$$

4. Find the indefinite integrals. Show work.
a. $\int \tan ^{9} x \sec ^{2} x d x=\frac{1}{10} \tan ^{10} x$ \qquad $\frac{1}{10} \tan ^{10} x+C$

$$
\begin{aligned}
u=\tan x \\
d u=\sec ^{2} x d x
\end{aligned} \Rightarrow \int \tan ^{9} x \sec ^{2} x d x=\int u^{9} d u=\frac{\frac{1}{10} u^{10}+c}{}=\frac{1}{10} \tan ^{10} x+c
$$

b. $\quad \int \cos ^{2} \theta d \theta=\frac{\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta}{\text { Pu thegerean }}$

Use the Pythagorean bouble/dentity $\cos ^{+C} \theta=\frac{1}{2}(1+\cos 2 \theta)$

$$
\begin{aligned}
\int \cos ^{2} \theta d \theta=\frac{1}{2} \int(1+\cos 2 \theta) d \theta & =\frac{1}{2} \int d \theta+\frac{1}{2} \cdot \frac{1}{2} \int \frac{\cos 2 \theta}{\cos u} \cdot \frac{2 d \theta}{d u} \\
& =\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta+c
\end{aligned}
$$

c. $\quad \int \sin ^{3} x \cos ^{6} x d x=\frac{1}{9} \cos ^{9} x-\frac{1}{7} \cos ^{7} x$

If you let $u=\sin x$, then we need one $\cos x$ for $d u$, which leaves $\int u^{3} \cos ^{5} x d x$ and \& Pythagoras cant halpus

$$
\begin{aligned}
&=\int u^{6} \cdot \sin ^{2} x d u \cdot(-1) \text { Pythagoras to the rescued } \\
&=\int u^{6} \cdot(-1)\left(1-\cos ^{2} x\right) d u \quad \sin ^{2} x=1-\cos ^{2} x \\
&=\int u^{6}(-1)\left(1-u^{2}\right) d u=\int u^{6}\left(u^{2}-1\right) d u \quad=1-u^{2} \\
&=\int\left(u^{6}-u^{6}\right) d u \\
&=\frac{1}{9} u^{9}-\frac{1}{7} u^{7}+c=\frac{1}{9} \cos ^{9} x-\frac{1}{7} \cos ^{9} x+c
\end{aligned}
$$

5. Consider the integral $\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta$.
a. Select which of these is the antiderivative for the integral $\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta$.
A. $\sin \theta+\mathrm{C}$
B. $\cos \theta+C$
C. $\tan \theta+\mathrm{C}$
D. $\csc \theta+\mathrm{C}$

E $\sec \theta+\mathrm{C}$
F. $\cot \theta+\mathrm{C}$
G. $-\sin \theta+C$
H. $-\cos \theta+\mathrm{C}$
I. $-\tan \theta+\mathrm{C}$
J. $-\csc \theta+\mathrm{C}$
K. $-\sec \theta+\mathrm{C}$
L. $-\cot \theta+\mathrm{C}$
M. All of these.

N . None of these.
b. Explain your reasoning for your selection.

Method 1: $\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta=\int \frac{1}{\cos \theta} \cdot \frac{\sin \theta}{\cos \theta} d \theta=\int \sec \theta \tan \theta d \theta=\sec \theta+c$ from formula
Method 2: Let $\begin{aligned} u & =\cos \theta \\ d u & =-\sin \theta d \theta \quad \int \frac{\sin \theta}{\cos ^{2} \theta} d \theta=-\int \frac{1}{\cos ^{2} \theta}(-\sin \theta) d \theta=-\int u^{-2} d u=\frac{1}{u}+C\end{aligned}$

$$
=\frac{1}{\cos \theta}+c
$$

$$
=\operatorname{cosec} \theta+c
$$

6. Consider $\int \sec ^{14} x \tan ^{17} x d x$
a. Suppose we let $u=\tan x$. Then $d u=\sec ^{2} x \quad d x$

Then we can write $\int \sec ^{14} x \tan ^{17} x d x=\int u^{17}\left(1+u^{2}\right)^{6} d u$.
Your answer is a binomial in terms of u raised to a power multiplied by u raised to a power.
Do not multiply it out. Do not find the antiderivative. Just leave it as a polynomial.

$$
\begin{aligned}
\int \sec ^{14} x \tan ^{17} x d x & =\int u^{17} \sec ^{12} x \cdot \sec ^{2} x d x \\
& =\int u^{17}\left(\sec ^{2} x\right)^{6} d u \\
& =\int u^{17}\left(1+\tan ^{2} x\right)^{6} d u=\int u^{17}\left(1+u^{2}\right)^{6} d u
\end{aligned}
$$

b. Suppose we let $w=\sec x$. Then $d w=\operatorname{Sec} w \tan \omega d x$

Then we can write $\int \sec ^{14} x \tan ^{17} x d x=\int \omega^{13}\left(\omega^{2}-1\right)^{8} d w$.
Your answer is a binomial in terms of w raised to a power multiplied by w raised to a power.
Do not multiply it out. Do not find the antiderivative Just leave it as a polynomial.

$$
\begin{aligned}
\int \sec ^{14} x \tan ^{17} x d x & =\int \sec ^{13} x \tan ^{16} x \tan ^{13}\left(\tan ^{2} x\right)^{8 \sec x \tan x d x} \\
& =\int \omega^{d x}=\int \omega^{12}\left(\omega^{2}-1\right)^{8} d w
\end{aligned}
$$

