
Practice Questions from Section 10.1 – 10.3

15. Consider the sequence given by the recurrence relation $a_{n+1} = 0.95a_n + 8.2$, $a_1 = 8.2$

a. The sequence converges to a limit L. Give the exact value of L. L =

Since 0.95 is so close to 1, convergence is slow; the graph takes a very long time before it gets close to its horizontal asymptote.

b. Convergence occurs when $a_{n+1} = a_n$. Use this fact to rewrite the above recurrence relation into an equation that involves L.

Equation: L = 0.95L + 8.2

- c. Solve the equation in part b to justify your claim in part a.
- L 0.95L = 8.2 L(1 - 0.95) = 8.2 $L = \frac{8.2}{1 - 0.95} = 164$

NY18 8.2(1-0.95X)

SETUP art=1000

8.2 (1 - .95

1 - 0.95

2000 2500 3000

Check sum is 164:

d. Complete the boxes below to write the next two terms of the series in long form. Each subsequent term involves a numerical expression containing 0.95 and 8.2.

$$8.2 + 8.2 (0.95) + 8.2 (0.95)^2 + ...$$

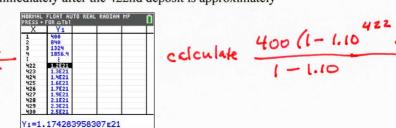
- e. Without using sigma notation, write an expression that gives the *n*th partial sum of this series S_n = i.e., the sum of the series of *n* terms.
- **f.** Enter your expression from part **e** in your grapher and scroll a table to find the value of *n* for which the sum first surpasses 150. \boxed{X}

The number of terms n = 48

16. Once per year Richie Rich deposits an amount of \$400 in an account which pays 10% interest per year, compounded annually, with <u>additional deposits of \$400 continually made at the end of the year</u>.

If B_n is the balance in the account, in dollars, immediately after Richie makes the *n*th deposit, then we can write $B_1 = 400 .

a. Complete the table to find the following. Report to the nearest \$0.01.


i) the balance, B₂, of the account on the day immediately after the second deposit.
ii) the balance, B₃, of the account on the day immediately after the third deposit.
iii) the balance, B₄, of the account on the day immediately after the fourth deposit.

- b. Suppose Richie makes 422 deposits. Which is true about the sum B_{422} ? The balance, B_{422} , of the account on the day immediately after the 422nd deposit is exactly A. $B_{422} = 400 \cdot 10^{422} + 400 \cdot 10^{421} + ... + 400 \cdot 10^2 + 400 \cdot 10 + 400$
 - B. $B_{422} = 400 \cdot 1.10^{423} + 400 \cdot 1.10^{422} + ... + 400 \cdot 1.10^2 + 400 \cdot 1.10 + 400$
 - C. $B_{422} = 400 \cdot 10^{423} + 400 \cdot 10^{422} + ... + 400 \cdot 10^2 + 400 \cdot 10 + 400$
 - $D. \ B_{422} = 400 \cdot 1.10^{422} \ + 400 \cdot 1.10^{421} \ + ... + 400 \cdot 1.10^2 \ + 400 \cdot 1.10 \ + \ 400$
 - E. B422 = 400·1.10⁴²¹ + 400·1.10⁴²⁰ + ... + 400·1.10² + 400·1.10 + 400 < we have 422 deposite & 400 NORHAL FLOAT AUTO REAL RADIAN MP
 - F. $B_{422} = 400 \cdot 10^{421} + 400 \cdot 10^{420} + ... + 400 \cdot 10^2 + 400 \cdot 10 + 400$
- c. The balance, B_{422} , of the account on the day immediately after the 422nd deposit is approximately
 - A. $B_{422} \approx \$1291712354137103000000$

B. $B_{422} \approx \$1067530871187688000000$

C. $B_{422} \approx \$1174283958306457000000$

- D. $B_{422} \approx .$1188774622351958700000$
- E. $B_{422} \approx \$14490664045501680000$
- F. The value of B_{422} can not be computed.

n, # Deposits	B_n
1	\$400
2	840
3	1324
4	1856.40

NORMAL FLOAT AUTO REA	IL RADIAN MP
400	
	400
1.1Ans+400	
	840
1.1Ans+400	
	1324
1.1Ans+400	
	1856.4

Plot1 Plot2 Plot3 ■Y18 400(1-1.10^X)