Practice Questions from Section 10.1-10.3

1. a. For what values of r does the sequence $\left\{r^{n}\right\}$ converge?

2. Complete: $\lim _{n \rightarrow \infty}(-1)^{n+1}(2)^{n}=$

Write in the box an exact number or DNE or ∞ or $-\infty$. This diverges because it oscillates to ∞ and to $-\infty$
3. Complete: $\lim _{n \rightarrow \infty}\left(1+\frac{\ln \sqrt{7}}{n}\right)^{n}=\sqrt{7}$ Write in the box an exp
This is an . Consider the sequence given by $\left\{a_{n}\right\}_{n=1}^{\infty}: \frac{7}{32}, \frac{7^{2}}{34}, \frac{7^{3}}{36}, \frac{7^{4}}{38}, \frac{7^{5}}{40}, \ldots$.

Find a formula for the nth term of the sequence in terms of $n . \quad\left\{a_{n}\right\}_{n=1}^{\infty}=$
 where

$$
r=\ln \sqrt{7}
$$

$$
e^{\ln \sqrt{7}}=\sqrt{7}
$$

5. Write the next two terms of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}: \quad \pi,-\pi, \pi,-\pi$
b. Find a formula for the nth term of the sequence in terms of n. $\left\{a_{n}\right\}_{n=1}^{\infty}=$
c. Write a recurrence relation that generates the above sequence.

$$
a_{n+1}=\square a_{n}, a_{1}=\square \pi, \text { for } n=1,2,3, \ldots
$$

$\pi,-\pi$

$$
(-1)^{n+1} \cdot \pi
$$

y other formulas are possible
$=-\pi(-1)^{n}$
6. Consider the sequence given by the recurrence relation $a_{n+1}=2+\frac{3}{a_{n}}, a_{1}=1$
a. The sequence converges to a limit L. Give the exact value of L.

b. Convergence occurs when $a_{n+1}=a_{n}$. Use this fact to write an equation that involves L.

$$
\text { Equation: } \quad 2+\frac{3}{L}^{n}=L
$$

c. Solve the equation in part \mathbf{b} to justify your claim in part a. You will get two solutions. Reject the negative value of L. Multiply both sides by $L \Rightarrow 2 L+3=L^{2}$

$$
\begin{aligned}
& 0=L^{2}-2 L-3 \\
& 0=(L-3)(L+1) \\
& \quad L=3, L=-1
\end{aligned}
$$

9. The series $\sum_{k=0}^{\infty} a r^{k}$ converges to 5. If $a=9.5$, what is the value of r ? Complete: $\sum_{k=0}^{\infty} 9.5\left(\frac{-9}{10}\right)^{k}=5$

Show work.

$$
5=\frac{a}{1-r}=\frac{9.5}{1-r} \Rightarrow 1-r=\frac{9.5}{5} \quad \begin{aligned}
1-r & =1.9 \Rightarrow r=1-1.9=-0.9=\frac{-9}{10}
\end{aligned}
$$

10. The series $\sum_{k=0}^{\infty} a r^{k}$ converges to 5 . If $r=\frac{1}{25}$, what is the value of a ? Complete: $\sum_{k=0}^{\infty} \frac{24}{5}\left(\frac{1}{25}\right)^{k}=5$ Show work. $5=\frac{a}{1-r}=\frac{a}{1-1 / 25}=\frac{a}{\frac{24}{25}}$ so $a=5 \cdot \frac{24}{25}=\frac{24}{5} 5$
11. Consider the sequence $\sqrt{42}, \sqrt{42-\sqrt{42}}, \sqrt{42-\sqrt{42-\sqrt{42}}}, \sqrt{42-\sqrt{42-\sqrt{42-\sqrt{42}}}}, \ldots$.
a. Write a recurrence relation that generates the above sequence.

$$
a_{n+1}=\sqrt{42-a_{n}}, a_{1}=\sqrt{42}, \text { for } n=1,2,3, \ldots
$$

b. The sequence converges to a limit L. Give the exact value of $L . \quad L=$

c. Convergence occurs when $a_{n+1}=a_{n}$. Use this fact to rewrite the above recurrence relation into an equation that involves L.

Equation: \qquad $\begin{aligned} 42-L & =L^{2} \\ 0 & =L^{2}+L-42\end{aligned}$
d. Solve the equation part \mathbf{c} to justify your claim in part \mathbf{b}.

$$
\begin{gathered}
0=(L-6)(L+7)=0 \\
L=6 \| L=-7
\end{gathered}
$$

12. For what values of r does the series $\sum_{k=0}^{\infty} a(r)^{k}$
13. Consider the function $f(x)=\sum_{k=0}^{\infty} 9\left(\frac{x-4}{2}\right)^{k}$
a. Evaluate $f(3)$. Show work.

$$
f(3)=6 \text { Write in the box an exact number or DNE or } \infty \text { or }-\infty
$$

$$
f(3)=\sum_{k=0}^{\infty} a\left(-\frac{1}{2}\right)^{k}=\frac{a}{1-r} w\left(\operatorname{th} a=9 \quad \frac{9}{1-(-1 / 2)}=\frac{9}{3}=\frac{9}{2}=\frac{2}{3}=6\right.
$$

b. For what values of x does $f(x)$ converge? Show work.

$$
\text { Solve }-1<\frac{x-4}{2}<1 \text { for } x
$$

Multiply all parts by 2: $-2<x-4<2$
Add 4 to all pants:

15. Consider the sequence given by the recurrence relation $a_{n+1}=0.95 a_{n}+8.2, a_{1}=8.2$
a. The sequence converges to a limit L. Give the exact value of $L . \quad L=$
b. Convergence occurs when $a_{n+1}=a_{n}$. Use this fact to rewrite the above recurrence relation into an equation that involves L.
Equation: $L=0.95 L+8.2$

$$
\begin{aligned}
& L-0.95 L=8.2 \\
& L(1-0.95)=8.2 \\
& \quad L=\frac{8.2}{1-0.95}=164
\end{aligned}
$$

d. Complete the boxes below to write the next two terms of the series in long form.

Each subsequent term involves a numerical expression containing 0.95 and 8.2.
$8.2+8.2(0.95)+8.2(0.95)^{2}+\ldots$
e. Without using sigma notation, write an expression that gives the nth partial sum of this series $S_{n}=$

1-0.95
f. Enter your expression from part \mathbf{e} in your grapher and scroll a table to find the value of n for which the sum first surpasses 150 .

The number of terms $n=48$
Check sum is 164:
c. Solve the equation in part b to justify your claim in part a.

Abstract

ie., the sum of the series of n terms.

16. Once per year Richie Rich deposits an amount of $\$ 400$ in an account which pays 10% interest per year, compounded annually, with additional deposits of $\$ 400$ continually made at the end of the year.
If B_{n} is the balance in the account, in dollars, immediately after Richie makes the nth deposit, then we can write $B_{1}=\$ 400$.
a. Complete the table to find the following. Report to the nearest $\$ 0.01$.
i) the balance, B_{2}, of the account on the day immediately after the second deposit.
ii) the balance, B_{3}, of the account on the day immediately after the third deposit.
iii) the balance, B_{4}, of the account on the day immediately after the fourth deposit.

n, \# Deposits	B_{n}
1	$\$ 400$
2	840
3	1324
4	1856.40

b. Suppose Richie makes 422 deposits. Which is true about the sum B_{422} ?

The balance, B_{422}, of the account on the day immediately after the 422nd deposit is exactly
A. $B_{422}=400 \cdot 10^{422}+400 \cdot 10^{421}+\ldots+400 \cdot 10^{2}+400 \cdot 10+400$
B. $B_{422}=400 \cdot 1.10^{423}+400 \cdot 1.10^{422}+\ldots+400 \cdot 1.10^{2}+400 \cdot 1.10+400$
C. $B_{422}=400 \cdot 10^{423}+400 \cdot 10^{422}+\ldots+400 \cdot 10^{2}+400 \cdot 10+400$

D. $B_{422}=400 \cdot 1.10^{422}+400 \cdot 1.10^{421}+\ldots+400 \cdot 1.10^{2}+400 \cdot 1.10+400$
E. $B_{422}=400 \cdot 1.10^{421}+400 \cdot 1.10^{420}+\ldots+400 \cdot 1.10^{2}+400 \cdot 1.10+400$
\leftarrow we have 422 deposits of 400

F. $B_{422}=400 \cdot 10^{421}+400 \cdot 10^{420}+\ldots+400 \cdot 10^{2}+400 \cdot 10+400$

Plots Plot Plot

- VY_{1} 日 $\frac{400\left(1-1.10^{X}\right)}{1-1.10}$
c. The balance, B_{422}, of the account on the day immediately after the 422 nd deposit is approximately
A. $\mathrm{B}_{422} \approx \$ 1291712354137103000000$
B. $\mathrm{B}_{422} \approx \$ 1067530871187688000000$ C. $\mathrm{B}_{422} \approx \$ 1174283958306457000000$
D. $\mathrm{B}_{422} \approx \$ 1188774622351958700000$
E. $B_{422} \approx \$ 14490664045501680000$
F. The value of B_{422} can not be computed.

calculate

