

- 1. Consider the area A(b) under the curve $y = \frac{1}{x^2}$ from x = 1 to x = b.
 - Without doing any calculations, find the value of $\int \frac{1}{x^2} dx$. a. Enter the value in the table below. Why is this true?
 - b. Use the FNINT command to complete the other entries in the table. Split the work among your group. Report full values with all the digits.
 - Conjecture with your group what to write in the last column. c.

Endpoint	b	1	100	100,000	50,000,000	×
Area = $A(b)$	$\int_{1}^{b} \frac{1}{x^2} dx$???

d. We can't evaluate expressions at infinity, but we can consider values that approach infinity. Use correct limit notation to express what you conjectured in the last column. $\lim_{x \to a} A(b) = \lim_{x \to a} \int_{a}^{b} \frac{1}{x^2} dx =$

Use the FTC to write an expression that represents the area under $y = \frac{1}{x^2}$ from x = 1 to x = b. e. Your expression involves b. Please simplify.

$$A(b) = \int_{1}^{b} \frac{1}{x^2} dx =$$

 $\frac{1}{x^2}dx =$

lim

- **f.** Produce a graph of A(b) with your grapher. Use the window $0 \le x \le 10$ by $-1 \le y \le 6$. Then sketch A(b) on the above graph.
 - a. Does this match your conjecture?

b. Complete: The horizontal line y =_____ is a ______ for the graph of $y = \frac{1}{x^2}$. The horizontal line y =_____ is a _____ for the graph of A(b).

Using limit laws with correct notation show what you claimed in part d will hold up in a court of law and is true. g. Use part e.

h. Think of a shortcut notation that might make sense to write the expression $\lim_{x \to 0} \int \frac{1}{x^2} dx$

This is formally called an "improper integral". It is perfectly legal notation. However, we never write $\frac{1}{\infty}$ in public since ∞ is not a number. One can not hold ∞ in the palm of one's hand.

- 2. Consider the area A(b) under the curve $y = \frac{1}{x}$ from x = 1 to x = b.
 - **a.** Without doing any calculations, find the value of $\int_{1}^{1} \frac{1}{x} dx$. Enter the value in the table below.
 - **b.** Use the FNINT command to complete the other entries in the table. Split the work among your group. Report to two decimal places.
 - **c.** Conjecture with your group what to write in the last column.

Endpoint	b	1	50,000,000	$1,000,000,000 = 10^9$	$100,000,000,000 = 10^{11}$	8
Area = $A(b)$	$\int_{1}^{b} \frac{1}{x} dx$???

- **d.** Complete the box with what you conjectured in the last column. $\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} A(b) = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx =$
- e. Use the FTC to write an expression in the box that represents the area under $y = \frac{1}{x}$ from x = 1 to x = b.

Your expression involves b. Please simplify as much as possible.

$$A(b) = \int_{1}^{b} \frac{1}{x} dx =$$

f. Produce a graph of A(b) with your grapher. Use the window 0≤x≤10 by -1≤y≤6. Then sketch A(b) on the above graph.
a. Does this match your conjecture?

b. Complete: The horizontal line y =_____ is a ______ for the graph of $y = \frac{1}{x}$. The graph of A(b) =_______ a horizontal asymptote.

g. Using limit laws with correct notation show what you claimed in part **2d** will hold up in a court of law and is true. Use part **e**.

$$\lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx =$$

- **h.** Optional: Suppose the upper limit $b = e^{21}$. Based on part **e**, what do you think $\int_{1}^{e} \frac{1}{x} dx$ would be? Explain. Check with FNINT.
- 3. Consider the functions $y = \frac{1}{x}$ and $y = \frac{1}{x^2}$ in Quadrant I.
 - **a.** Label each graph with its formula.
 - **b.** How can you tell which is which by inspection?
 - c. How might your answer in **3b** give you intuition about your conclusions in **1d** and **2d**?

A(b) =