Fruit from a Fertile Father

- Suppose $f(w) = \sum_{n=0}^{\infty} w^n = 1 + w + w^2 + w^3 + w^4 + w^5 + w^6 + w^7 + w^8 + w^9 + w^{10} + w^{11} + w^{12} + w^{13} + w^{14} + w^{15} + \dots$
 - **a**. If w = -1, then $f(-1) = \sum_{n=0}^{\infty} (-1)^n = 1 + \boxed{} + \boxed{} + \boxed{} + \cdots = \boxed{}$ Write an exact answer, $\infty, -\infty$, or DNE
 - If w = 1, then $f(-1) = \sum_{n=0}^{\infty} (1)^k = 1 + \square + \square + \square + \square + \square + \square = \square$ Write an exact answer, $\infty, -\infty$, or DNE
 - **b.** We have $f(w) = \sum_{n=0}^{\infty} w^n = 1 + w + w^2 + w^3 + w^4 + \dots$ converges to the function $g(w) = \frac{1}{\sqrt{2}}$ for $\sqrt{2} < w < \sqrt{2}$

Hint: Refer to the title of this activity. What other convergence tests can also help?

c. Pick the best answer: The interval reported in part b is called the *interval* of

{ convergence, conviction, confluence, concupiscence, concubinage, conception, conveyorization, confederation, constitution }

d. Sketch the interval reported in part **b** on a number line:

e. Which of the following is the graph of $f(w) = \sum_{n=0}^{\infty} w^n = 1 + w + w^2 + w^3 + w^4 + \dots$ over the interval in part **b**?

Use part a (and not a grapher). Circle your selection and enter numbers in the boxes for the choice you circled.

A.

Β.

C.

D.

E.

F.

G.

H.

- **f.** The *center* of the interval in part **b** is w =_____ . The *radius* of _
- Discuss the relationship between the graphs of f(w) in part e and your answers to part 1a. 2. Discuss the relationship between the series f(w) and the function g(w) = 1/(1-w). What is the same? What is different?

3.	Suppose $a(x) = \sum_{n=0}^{\infty} -100 \left(\frac{x-20}{5} \right)^n$	$\int_{0}^{x} = -100 - 100 \left(\frac{x - 20}{5} \right)$	$-100\left(\frac{x-20}{5}\right)$	$\left \frac{x-20}{5} \right $	$\int_{0}^{3} -100 \left(\frac{x-20}{5} \right)^{3}$) ⁴ –
	 \ 3	1	\ 5 /	\ \ \	/ \ > .	J

a. Report the interval of convergence. Show work.

- **b.** The *center* of the interval of convergence is $x = \underline{\hspace{1cm}}$. The *radius* of convergence is $R = \underline{\hspace{1cm}}$
- c. If x = |, the **left** endpoint of the interval of convergence, then

$$f(\boxed{)} = \sum_{n=0}^{\infty} -100(\boxed{)}^{k} = -100 + \boxed{-} + \boxed{-} + ... = \boxed{}$$
 Write an exact answer, $\infty, -\infty$, or DNE

If x = | |, the **right** endpoint of the interval of convergence, then

$$f(\boxed{)} = \sum_{n=0}^{\infty} -100(\boxed{)})^{k} = -100 - \boxed{\boxed{}} - \boxed{\boxed{}} - \boxed{\boxed{}} - ... = \boxed{\boxed{}}$$
 Write an exact answer, $\infty, -\infty$, or DNE

d. Which of the following is equivalent to $a(x) = \sum_{n=0}^{\infty} -100(\frac{x-20}{5})^k = -100 - 100(\frac{x-20}{5}) - 100(\frac{x-20}{5})^2 - 100(\frac{x-20}{5})^3 - \dots$ on its interval of convergence? Select one.

A.
$$\frac{500}{25-x}$$

B.
$$\frac{500}{25+x}$$
 C.

C.
$$\frac{500}{x-25}$$

D.
$$\frac{100}{25-x}$$

E.
$$\frac{100}{25+x}$$

F.
$$\frac{100}{x-25}$$
 G

G.
$$\frac{500}{15-x}$$

A.
$$\frac{500}{25-x}$$
 B. $\frac{500}{25+x}$ C. $\frac{500}{x-25}$ D. $\frac{100}{25-x}$ E. $\frac{100}{25+x}$ F. $\frac{100}{x-25}$ G. $\frac{500}{15-x}$ H. $\frac{500}{15+x}$ I. $\frac{500}{x-15}$

e. Which of the following is the graph of $a(x) = \sum_{n=0}^{\infty} -100(\frac{x-20}{5})^n = -100 - 100(\frac{x-20}{5}) - 100(\frac{x-20}{5})^2 - 100(\frac{x-20}{5})^3 - \dots$

Circle your selection and enter numbers in the boxes for the choice you circled.

D.

E.

F.

H.

- f. Report the equation of the vertical asymptote. ______ Report the coordinates of the hole: (
- Discuss the relationship between the graph of $a(x) = \sum_{n=0}^{\infty} -100(\frac{x-20}{5})^k = -100 100(\frac{x-20}{5}) 100(\frac{x-20}{5})^2 100(\frac{x-20}{5})^3 \dots$

in part 3e and its father function,
$$f(w) = \sum_{n=0}^{\infty} w^n = 1 + w + w^2 + w^3 + w^4 + \dots$$
 shown in part 1e.