9.1 and 9.2 Modeling Differential Equations and Verifying Solutions

Important Ideas:

1. Which of the following functions are solutions to the differential equation $y^{\prime \prime}+y=0$ ? (Choose all that apply.)
A) $y=e^{x}$
B) $y=e^{-x}$
C) $y=\sin x$
D) $y=-\cos x$
E) $y=3 \cos (x)$
2. The number of fruit flies increases at a rate proportional to its current population, $F$. Write a differential equation to represent this situation.
3. Find the general solution to each differential equations
a. $\quad x \frac{d y}{d x}=5$
b. $x \frac{d y}{d x}=5 \ln x$

To find the general solution to $\frac{d y}{d t}=k(y-A)$, assuming $y-A \neq 0$, we perform three steps. Fill in the blanks.

1. Separate: $\quad \frac{d y}{d t}=k(y-A)$

Separate the variables so $y$ is on one side, $t$ is on the other by

$$
\frac{d y}{(y-A)}=k d t
$$

2. Integrate: $\int \frac{d y}{(y-A)}=\int k d t$

$$
\ln |y-A|+C_{1}=k t+C_{2}
$$ multiplying and dividing.

Integrate both sides. Since $y-A \neq 0, \int \frac{d y}{(y-A)}=\ln |y-A|+C_{1}$
We could include the constant of integration on both sides or not, and just write the following, assuming $C_{3}=$ $\qquad$

$$
\ln |y-A|=k t+C_{3}
$$

3. Isolate: $\ln |y-A|=k t+C_{3}$

If possible, get $y$ all by itself.

$$
e^{\ln |y-A|}=e^{k t+C_{3}}
$$

Make both sides a power of $e$.
$|y-A|=e^{C_{3}} e^{k t} \quad$ Use an inverse property and law of exponents
$|y-A|=C_{4} e^{k t} \longleftarrow$ What are we assuming here?

$$
C_{4}=
$$

$\qquad$

$$
y-A= \pm C_{4} e^{k t}
$$

$$
y-A=C e^{k t} \longleftarrow \text { What are we assuming here? } C=
$$

$\qquad$

$$
y \quad=C e^{k t}+A \quad \text { Subtract } A \text { from both sides to solve for } y .
$$

1. Solve the differential equation $\frac{d y}{d t}=k(y-A)$ for the special case when $y-A=0$.
2. Suppose Renfield brings with him a glass of ice water to the wine cellar, sets it down to measure Sherry's body temperature, and then leaves the non-empty glass in the cellar.
a. Use the above template to report the general solution for $\frac{d y}{d t}=k(y-60)$, where $y^{\prime}$ is the rate the ice water warms. $y=$ $\qquad$ $+60$
b. Assume the initial temperature of the ice water is $32^{\circ} \mathrm{F}$. If two hours later it warms to $42^{\circ} \mathrm{F}$, find the particular solution to 2a. Report $k$ to 2 decimal places. Use technology or algebra.
3. Fill in the boxes.

Recall what $C$ represents graphically for the family $y=C e^{k t}+60$.


