9.1 and 9.2 Modeling Differential Equations and Verifying Solutions

Important Ideas:

- 1. Which of the following functions are solutions to the differential equation y'' + y = 0? (Choose all that apply.)
 - A) $y = e^x$
 - B) $y = e^{-x}$
 - C) $y = \sin x$
 - D) $y = -\cos x$
 - E) $y = 3\cos(x)$
- 2. The number of fruit flies increases at a rate proportional to its current population, F. Write a differential equation to represent this situation.
- 3. Find the general solution to each differential equations

a.
$$x \frac{dy}{dx} = 5$$

b. $x \frac{dy}{dx} = 5 \ln x$

To find the general solution to $\frac{dy}{dt} = k(y - A)$, assuming $y - A \neq 0$, we perform three steps. Fill in the blanks.		
1. Separate:	$\frac{dy}{dt} = k(y - A)$	Separate the variables so y is on one side, t is on the other by multiplying and dividing.
	$\frac{dy}{(y-A)} = kdt$	
2. Integrate:	$\int \frac{dy}{(y-A)} = \int kdt$	Integrate both sides. Since $y - A \neq 0$, $\int \frac{dy}{(y - A)} = \ln y - A + C_1$
	$\ln y - A + C_1 = kt + C_2$	We could include the constant of integration on both sides
		or not, and just write the following, assuming $C_3 =$
lı	$ y-A = kt + C_3$	
3. Isolate:	$\ln y - A = kt + C_3$	If possible, get y all by itself.
	$e^{\ln y-A } = e^{kt+C_3}$	Make both sides a power of <i>e</i> .
1.	$y-A =e^{C_3}e^{kt}$	Use an inverse property and law of exponents
1	$ y-A = C_4 e^{kt} \blacktriangleleft$	_What are we assuming here?
		$C_4 =$
У	$e - A = \pm C_4 e^{kt}$	Remove absolute value signs.
	$A = Ce^{kt}$	What are we assuming here? $C =$
У	$= Ce^{kt} + A$	Subtract A from both sides to solve for y .

1. Solve the differential equation $\frac{dy}{dt} = k(y - A)$ for the special case when y - A = 0.

- 2. Suppose Renfield brings with him a glass of ice water to the wine cellar, sets it down to measure Sherry's body temperature, and then leaves the non-empty glass in the cellar.
 - a. Use the above template to report the general solution for $\frac{dy}{dt} = k(y-60)$, where y' is the rate the ice water warms. y = + 60
 - **b.** Assume the initial temperature of the ice water is 32° F. If two hours later it warms to 42° F, find the **particular solution** to **2a**. Report *k* to 2 decimal places. Use technology or algebra.

