	SERIES		RADIUS OF CONVERGENCE	WHEN IS VALID/TRUE	
$\frac{1}{1-x}$	=	$1 + x + x^2 + x^3 + x^4 + \dots$		NOTE THIS IS THE OUR JUST THINK OF x A	
	=	$\sum_{n=0}^{\infty} x^n$		$x \in (-1, 1)$	-1 < x < 1
e^x	=	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$		$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3}$ $e^{(17x)} = \sum_{n=0}^{\infty} \frac{(17x)^n}{n!}$	
	=	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$		$x \in \mathbb{R}$	$-\infty < x < \infty$
$\cos x$	=	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$		NOTE $y = \cos x$ IS A (I.E., $\cos(-x) = +$ TAYLOR SERIS OF y <u>EVEN</u> POWERS.	$\cos(x)$ AND THE
	=	$\sum_{n=0}^{\infty} (-1)^n \ \frac{x^{2n}}{(2n)!}$		$x \in \mathbb{R}$	$-\infty < x < \infty$
$\sin x$	=	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$		NOTE $y = \sin x$ IS A (I.E., $\sin(-x) = -$ TAYLOR SERIS OF y <u>ODD</u> POWERS.	$\sin(x)$) and the
	=	$\sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{x^{2n-1}}{(2n-1)!} \stackrel{\text{or}}{=} \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n-1}}{(2n+1)!}$	$\frac{1}{1)!}$	$x \in \mathbb{R}$	$-\infty < x < \infty$
$\boxed{\ln\left(1+x\right)}$	=	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$		QUESTION: IS $y =$ ODD, OR NEITHER?	$\ln(1+x)$ even,
	=	$\sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{x^n}{n} \stackrel{\text{or}}{=} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \qquad \text{Interval}$	grate terms of geor	$x \in (-1,1]$ metric series $\frac{1}{1-x}$ and p	
$\tan^{-1} x$		$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots$		QUESTION: IS $y =$ ODD, OR NEITHER?	$\arctan(x)$ EVEN,
	=	$\sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{x^{2n-1}}{2n-1} \stackrel{\text{or}}{=} \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$		$x \in [-1, 1]$	$-1 \le x \le 1$
				of $-x^2$ in the geometric series ation of the series for arcta	1 17