
Commonly Used Taylor Series

series when is valid/true
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= 1 + x + x2 + x3 + x4 + . . .
note this is the geometric series.

just think of x as r
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note y = cos x is an even function
(i.e., cos(−x) = +cos(x)) and the

taylor seris of y = cos x has only

even powers.
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sin x = x − x3
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note y = sin x is an odd function
(i.e., sin(−x) = − sin(x)) and the
taylor seris of y = sin x has only

odd powers.
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ln (1 + x) = x − x2
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− . . . question: is y = ln(1 + x) even,

odd, or neither?
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tan−1 x = x − x3
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9
− . . . question: is y = arctan(x) even,

odd, or neither?
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Integrate terms of geometric series               and perform a substitution.   

Perform a substitution of −x   in the geometric series               and integrate.1 − u
1
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Check this by differentiation of the series for arctan x and decomposing.
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