Arc Length

A definite integral can be used to compute the arc length, or length, of a curve.
To compute the length of the curve $y=f(x)$ from $x=a$ to $x=b$,
where $a<b$, we divide the curve into small pieces,
each one approximately straight.
Assume f and f^{\prime} are continuous on $[a, b]$.

1. We enlist the help of a very old dead guy who smells like Greek Feta cheese:

What does he say is true about length of the hypotenuse L ?
2. We approximate $f^{\prime}(x)=\frac{d y}{d x} \approx \frac{\Delta y}{\Delta x}$ so $\Delta y \approx f^{\prime}(x) \Delta x$.

Substitute this in your formula in part 1.

3. Explain why, as the number of subintervals increases without bound, we have

$$
\begin{aligned}
\text { Length }= & \int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
& =\int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x
\end{aligned}
$$

Similarly, if $x=g(y)$ and g^{\prime} are continuous on $c \leq y \leq d$, we interchange the roles of x and y :
Length $=\int_{c}^{d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$

