A gift that keeps on giving!

Reset the defaults on your calculator. (These are calculator settings it has when it first comes out of the box.) Press 2nd [MEM] 7:Reset... 2:Defaults... 2:Reset

1. Clear the home screen.

Press the number 1 followed by ENTER.
This number will be the initial seed.
2. Next build the expression $1+\frac{\mathrm{Anss}}{2}$

For the shortcut FRAC menu, press ALPHA [F1] and use nird for stacked fractions instead of the division key.
3. Once you build the expression, continue pressing ENTER to create the screen to the right. Describe any patterns.
4. Conjecture what three expressions will come next.
$1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}$, \qquad , \qquad ,
5. After pressing ENTER many, many times, the TI-84 Plus will eventually stop displaying a number as a stacked fraction. (It resigns from duty once the number's denominator exceeds 4 digits. Alas, using $>$ Frac on 1. 999938965 will not help.)

16383
a. If we were write the number which comes after $\frac{1689}{\mathbf{8 1 9 2}}$
 as a stacked fraction, what would be its denominator?
b. What would be its numerator?
c. Verify your claim by entering your fraction on the home screen.
d. A student had pressed the ENTER key 5 times to reach the number $\frac{31}{16}$. What is the least number of times they would have pressed ENTER to reach 1.999938965? Create a formula for the nth term.
6. Eventually the expression $1+\frac{\mathrm{Ans}}{2}$ will converge to 2 .

This means when Ans $=2$, then $1+\frac{\text { Ans }}{2}=$ ans.
a. Solve the equation $1+\frac{x}{2}=x$ to show that $x=2$ is the one and only value to which this expression converges.
b. Conjecture what would happen if the initial seed were 2 .
c. Repeat the above with a seed of -1 .

After pressing ENTER 5 times, can you predict three more?
d. Precalculus: Show your formula in 5 d is equivalent to $2-\frac{1}{2^{n-1}}$.

Then show why $2-\frac{1}{2^{n-1}} \rightarrow 2$ as $n \rightarrow \infty$.

1+ $1+\frac{\text { Ans }}{2}$	
	1.999999998
$1+\frac{\text { Ans }}{2}$	
	1.9999999999.
$1+\frac{\text { Ans }}{2}$	
	2.
$1+\frac{\mathrm{Anss}}{2}$	
	2.
$1+\frac{\text { enins }}{2}$	
	2.

