

A Gift from Gottfried (and Big Daddy)

+1 Rhino Bonus Participation Point

1. Suppose $f(w)=\sum_{n=0}^{\infty} w^{n}=1+w+w^{2}+w^{3}+w^{4}+w^{5}+w^{6}+w^{7}+w^{8}+w^{9}+w^{10}+w^{11}+\ldots$
a. Replace w with $-x^{2}$ in the above expression:
$f\left(-x^{2}\right)=\sum_{n=0}^{\infty}(\square)^{n}=1+\square+(\square)^{2}+(\square)^{3}+(\square+\ldots$
b. Let's call the above child series $d(x)$. Simplify.

$$
d(x)=1+\square+\square+\square+\ldots
$$

Write the expression in sigma notation so it is simplified. $d(x)=\sum_{n=0}^{\infty}$
c. Report the radius of convergence of $d(x) . \quad R=\square$
d. Complete: the left endpoint of the interval of convergence is $x=$ \qquad and is \qquad in the interval. Justify your claim in the space below.
$\overline{\text { \{included, excluded \}}}$
e. Complete: the right endpoint of the interval of convergence is $x=$ \qquad and is \qquad in the interval. Justify your claim in the space below.
\{ included, excluded\}
f. Write the interval of convergence in inequality notation.
g. Within its interval of convergence, the series $d(x)$ is equivalent to the function $d(x)=\frac{1}{\square}$.

Notice the even symmetry (about the y-axis)
c. The left endpoint of the interval of convergence is $x=$ Justify your claim in the space below.

d. The right endpoint of the interval of convergence is $x=$ \qquad and is \qquad in the interval. Justify your claim in the space below.
\{included, excluded \}
\square
e. Write the interval of convergence in inequality notation.
f. Within its interval of convergence, the series $h(x)$ is equivalent to the function $h(x)=\int d(x) d x=$ \qquad -
g. If we make either substitution of $x=1$ in the series $h(x)$, we have the remarkable result that was published in the 17th century by Gottfried Leibniz. Enter exact numerical values in each box.
$\square+\square+\square+\square+\square=\square$

