Bitte A Gift from Gottfried (and +1 Rhino Bonus Participation)	
1. Suppose $f(w) = \sum_{n=0}^{\infty} w^n = 1 + w + w^2 + w^3 + w^4 + w^5$	$+w^{6}+w^{7}+w^{8}+w^{9}+w^{10}+w^{11}+$
a . Replace w with $-x^2$ in the above expression:	
$f(-x^{2}) = \sum_{n=0}^{\infty} \left(\boxed{}} \right)^{n} = 1 + \boxed{}} + \left(\boxed{}} \right)^{2} + \left(\boxed{}} \right)^{2}$	$\left(\right)^{3} + \left(\right)^{4} + \dots$
b. Let's call the above child series $d(x)$. Simplify.	
$d(x) = 1 + \boxed{ + \boxed{ + } + \boxed{ + } }$	+
	~
Write the expression in sigma notation so it is s	implified. $d(x) = \sum_{n=0}^{\infty}$
c. Report the radius of convergence of $d(x)$. $R =$	
 d. Complete: the left endpoint of the interval of convergence is x = and is Justify your claim in the space below. e. Complete: the right endpoint of the interval of convergence is x = and Justify your claim in the space below. 	
 f. Write the interval of convergence in inequality notation. g. Within its interval of convergence, the series d(x) is equivalent to the function 	
2. Integrate each term of $d(x)$ to create a new series $h(x) = \int d(x) dx$. No need for a	"+ C". Notice the <i>even</i> symmetry (about the <i>y</i> -axis)
a . $h(x) = \int d(x) dx =$ + + + + + + + + + + + + + + + + + +	h(x)
Write the expression for the series $h(x)$ in sigma notation so it is simplified.	$h(x) = \sum_{n=1}^{\infty}$
Hint: Integrate your expressions in 1b .	
b. Report the radius of convergence of $h(x)$. $R =$	Notice the <i>odd</i> symmetry
c. The left endpoint of the interval of convergence is <i>x</i> = and is	(about the <i>origin</i>) in the interval.
$h(_) = _ + \ _ + \ _ + = \sum_{i=1}^{\infty}$	
d . The right endpoint of the interval of convergence is $x =$ and is	in the interval.
	ided, excluded}
$h(\boxed{)} = \boxed{+} + \boxed{-} + \boxed{-} + + \cdots = \sum_{n=0}^{\infty}$	
e. Write the interval of convergence in inequality notation.	
f. Within its interval of convergence, the series $h(x)$ is equivalent to the function	$\int d(x) dx = $
g. If we make either substitution of $x = 1$ in the series $h(x)$, we have the remark 17th contury by Cottfried Leibniz. Enter event numerical values in each base	-
17th century by Gottfried Leibniz. Enter exact numerical values in each box	
	+ + =