A Gift from Big Daddy

1. Suppose $f(w)=\sum_{n=0}^{\infty} w^{n}=1+w+w^{2}+w^{3}+w^{4}+w^{5}+w^{6}+w^{7}+w^{8}+w^{9}+w^{10}+w^{11}+w^{12}+w^{13}+w^{14}+w^{15}+\ldots=\frac{1}{1-w}$
a. Replace w with $-x$ in the above expression:
$f(-x)=\sum_{n=0}^{\infty}(\square)^{n}=1+\square+(\square)^{2}+(\square)^{3}+(\square)^{4}+\ldots$
b. Let's call the above child series $b(x)$. Simplify.

$$
b(x)=1+\square+\square+\square+\square+\ldots
$$

Write the expression in sigma notation so it is simplified. $b(x)=\sum_{n=0}^{\infty}$
c. Report the radius of convergence of $b(x) . \quad R=\square$
d. Complete: the left endpoint of the interval of convergence is $x=$ \qquad and is \qquad in the interval. Justify your claim in the space below.
$\overline{\text { \{included, excluded }\}}$
$b(\square)=\sum_{n=0}^{\infty}(\square)^{n}=1+\square+\square+\square+\square+\ldots=\square$ Write an exact answer, $\infty,-\infty$, or DNE

Complete: the right endpoint of the interval of convergence is $x=$ \qquad and is \qquad in the interval. Justify your claim in the space below. \{ included, excluded\}

e. Write the interval of convergence in inequality notation. \qquad
f. Within its interval of convergence, the series $b(x)$ is equivalent to the function $b(x)=\frac{1}{\square}$
g. Which of the following is the graph of $b(x)$ over the interval in part \mathbf{e} ?

Use part d (and not a grapher). Circle your selection and enter numbers in the boxes for the choice you circled. The dashed line is a vertical asymptote.
A.

B.

C.

D.

E.

F.

H.

2. On the interval of convergence, the graph of $b(x)$ is a
3. Integrate each term of $b(x)$ to create a new series $c(x)=\int b(x) d x$. No need for a " +C ".
a. $\quad c(x)=\int b(x) d x=$ \square
\square $+\square+$

b. Write the expression for the series $c(x)$ in sigma notation so it is simplified.
c. Report the radius of convergence of $c(x) . R=$ \qquad
d. The left endpoint of the interval of convergence is $x=$ \qquad and is \qquad in the interval. Justify your claim in the space below. \{included, excluded\}

$$
c(\square)=\square+\square+\square+\square+\square+\ldots=\sum^{\infty}
$$

e. The right endpoint of the interval of convergence is $x=$ \qquad and is \qquad in the interval. Justify your claim in the space below. \{included, excluded \}

f. Write the interval of convergence in inequality notation. \qquad
g. Within its interval of convergence, the series $c(x)$ is equivalent to the function $c(x)=\int b(x) d x=$ \qquad Hint: Integrate your expression in $\mathbf{1 f}$.
h. If we make either substitution of $x=1$ in the series $c(x)$, we have the remarkable result below:

4. Suppose a new (child) power series is made by differentiating or integrating the original parent. Discuss if the center of the interval of convergence of the child power series might change. (YES / NO)

Discuss if the radius of convergence of the child power series might change. (YES / NO)

Discuss if the interval of convergence of the child power series might change. (YES / NO)
5. Suppose a new (child) power series is made by a substitution involving a shift, stretch, shrink or reflection. Discuss if the center of the interval of convergence of the child power series might change. (YES / NO)

Discuss if the radius of convergence of the child power series might change. (YES / NO)

Discuss if the interval of convergence of the child power series might change. (YES / NO)

