Show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.

The base of a solid S is a circle of radius 1. For this solid, the cross-sections ($sli\Omega s$) perpendicular to the x-axis are squares. Find the volume of this solid.

Find the volume of the solid whose base is the region bounded by the curve $y=50\sqrt{\cos x}$ and the x-axis on $[-\pi/2,\pi/2]$ and whose cross sections through the solid perpendicular to the x-axis are isosceles right triangles with a horizontal leg in the xy-plane and a vertical leg above the x-axis.

Find the volume of the solid whose base is the triangle with vertices (0,6) and (2,0) and (0,0) and whose cross sections perpendicular to the base and

- a. parallel to the y-axis are semicircles.b. parallel to the x-axis are semicircles.

