The region bounded by the graph of $y = x^2$, y = 1, and x = 0 is rotated about the line y = 1. Find the volume of the resulting solid.

The region bounded by the graphs of $y = x^3$, y = 8, and x = 0 is rotated about the y-axis. Find the volume of the resulting solid.

See https://www.geogebra.org/m/yn6xudfs#material/Dkpp8qxZ

The washer method = the disk method with a hole in it

The graphs of y = x and $y = x^2$ intersect at the points (0,0) and (1,1). The region bounded by these graphs is revolved about the x-axis. Find the volume of the

The region bounded by the graphs of y=x and $y=x^2$ is revolved about the line y=2. Find the volume of the resulting solid.

The region bouned by the graphs of y = x and $y = x^2$ is revolved about the line x = -1.

Find the volume of the resulting solid.

The region bounded by the graphs of y = x and $y = x^2$ is revolved about the y-axis. Find the volume of the resulting solid.

