Find
$$\lim_{x \to 0} (1 - 1234x)^{\frac{10}{x}}$$

- 1. Let $w = \frac{10}{x}$. Use substitution to rewrite everything in terms of w.
 - a. We have $x = \frac{10}{w}$. The expression 1234x is $1234 \cdot \frac{10}{w} = \frac{12340}{w}$ so we have

$$(1-1234x)^{\frac{10}{x}} = \left(1-\frac{12340}{w}\right)^{w}$$

- b. As $x \to 0$, we have $w = \frac{10}{x} \to \infty$. Observe a graph <u>here</u> to see. (Large numbers in the denominator mean very small outputs.)
- c. Use parts a and b to write $\lim_{x \to 0} (1 1234x)^{\frac{10}{x}} = \lim_{w \to \infty} \left(1 \frac{12340}{w}\right)^w$
- 2. Cool Fact! $\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n = e^r$, so $\lim_{w \to \infty} \left(1 \frac{12340}{w} \right)^w = \lim_{w \to \infty} \left(1 + \frac{-12340}{w} \right)^w = e^{-12340}$.

Another Approach: Use L'Hopital's Rule by setting $y = (1 - 1234x)^{\frac{10}{x}}$ and finding $\lim_{x \to \infty} \ln y$.

Then find
$$\lim_{x\to 0} y = \lim_{x\to 0} e^{\ln y} = e^{\lim_{x\to 0} \ln y}$$
.

$$\ln (1 - 1234x)^{\frac{10}{x}} = \frac{10}{x} \ln (1 - 1234x) = \frac{10 \ln (1 - 1234x)}{x} \text{ which, as } x \to 0, \text{ is the indeterminate form } \frac{0}{0}.$$

$$\lim_{x \to 0} \frac{10 \ln (1 - 1234x)}{x} = \lim_{x \to 0} \frac{10 \cdot \frac{1}{(1 - 1234x)} \cdot \left(\frac{d}{dx}(1 - 1234x)\right)}{1} = \lim_{x \to 0} \frac{10}{(1 - 1234x)} \cdot (-1234x)$$

$$= \lim_{x \to 0} \frac{-12340}{(1 - 1234x)} = \lim_{x \to 0} \frac{-12340}{(1 - 0)} = -12340.$$

We now find
$$\lim_{x \to 0} y = \lim_{x \to 0} e^{\ln y} = e^{\lim_{x \to 0} \ln y} = e^{-12340}$$
.