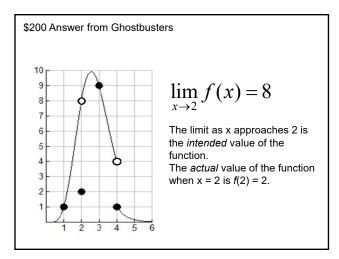
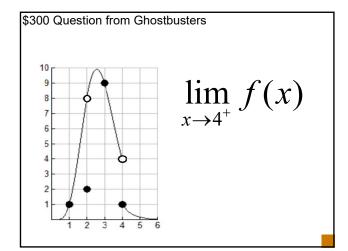
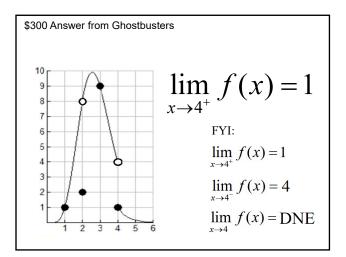
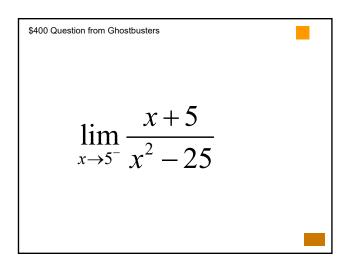
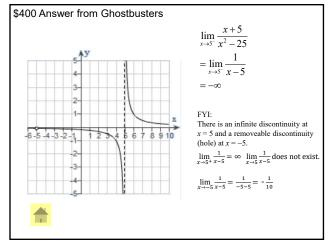

LET'S PLAY CALC-PARDY!!	Ghostbusters	Road Trip	FTC	Aunty Derivative
	<u>Q \$100</u>	<u>Q \$100</u>	<u>Q \$100</u>	<u>Q \$100</u>
	<u>Q.\$200</u>	<u>Q \$200</u>	<u>Q \$200</u>	<u>Q \$200</u>
	<u>Q \$300</u>	<u>Q \$300</u>	<u>Q \$300</u>	<u>Q \$300</u>
	<u>Q_\$400</u>	<u>Q \$400</u>	<u>Q \$400</u>	<u>Q \$400</u>
	<u>Q \$500</u>	<u>Q \$500</u>	<u>Q \$500</u>	<u>Q \$500</u>
http://www.magicnet.net/~itms/jeopardy/index.htm				Final Jeopardy

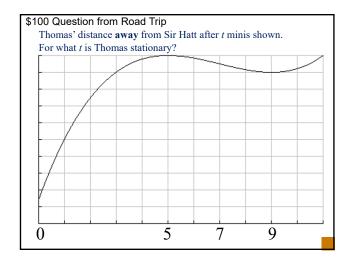

On the pages that follow, the questions are on the left hand column and the answers are on the right hand column.

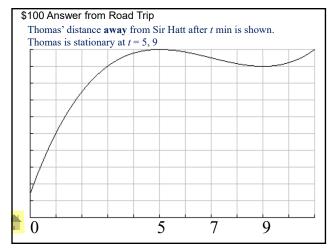

Fold the paper in half to work these problems.

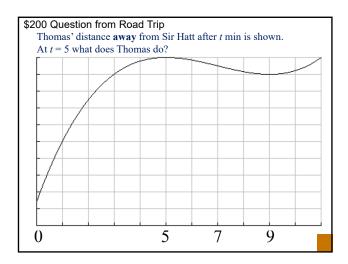


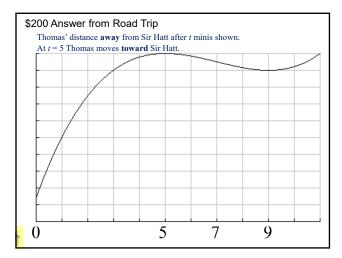


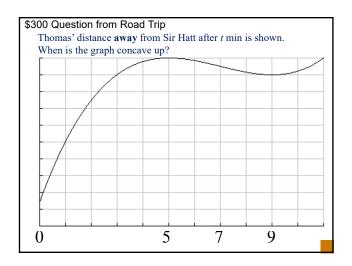


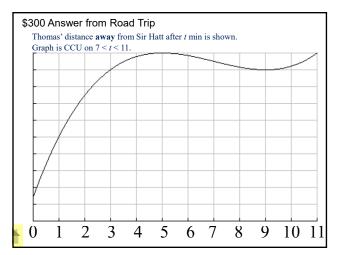


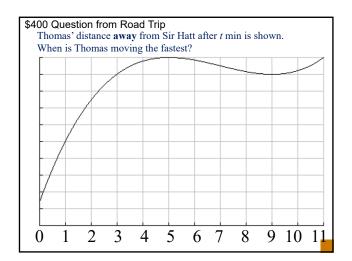


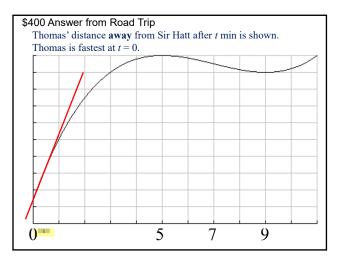


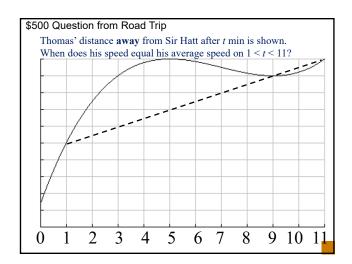

\$500 Question from Ghostbusters

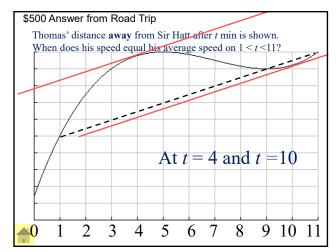

$$\lim_{x \to 0} \frac{e^x - \sin x - 1}{x^3 + 7x^2}$$

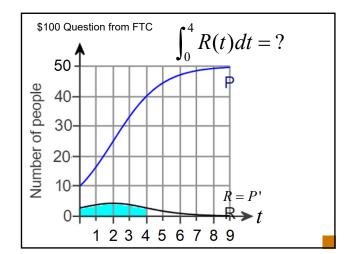


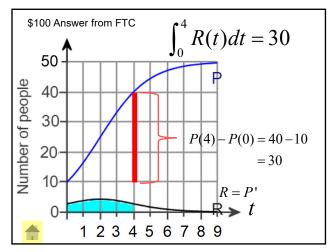


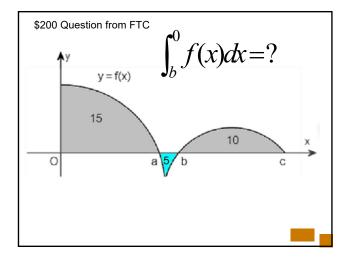


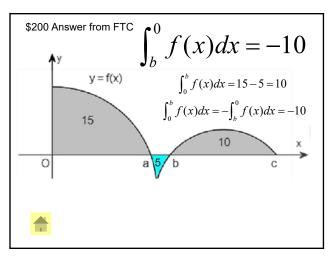


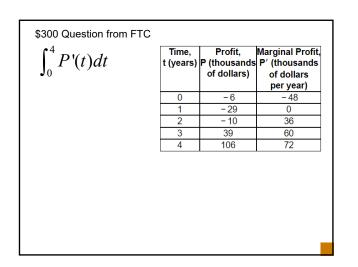


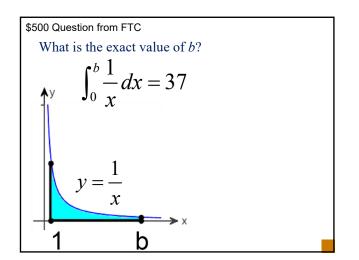


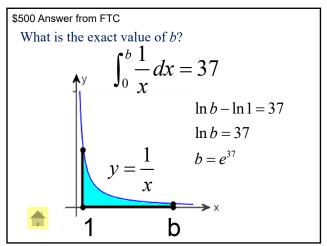


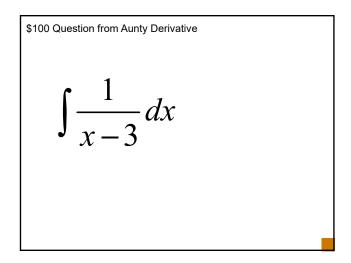


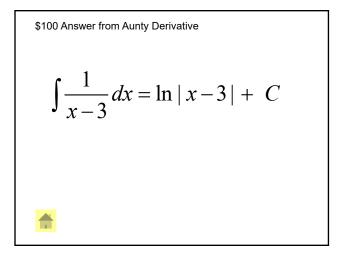


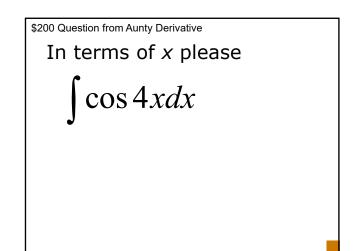


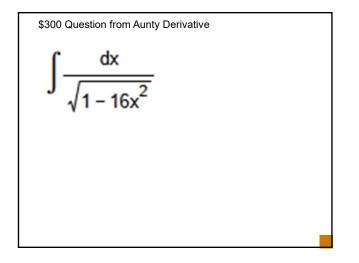

Time, t (years)		Marginal Profit, P′ (thousands
	of dollars)	of dollars per year)
0	- 6	- 48
1	- 29	0
2	- 10	36
3	39	60
4	106	72
P(0)	=106-	(-6)=112
	t (years) 0 1 2 3 4	t (years) P (thousands of dollars) 0 -6 1 -29 2 -10 3 39


\$400 Question from FTC


$$g(x) = \int_9^x \ln(\sin(e^{t^3})) dt$$


What is g'(x)?


\$400 Answer from FTC $g(x) = \int_{9}^{x} \ln(\sin(e^{t^{3}})) dt$ $g'(x) = \ln(\sin(e^{x^{3}}))$ By FTC we have $g(x) - g(9) = \int_{9}^{x} g'(t) dt$ Notice the integrand is g'(t):


\$200 Answer from Aunty Derivative

$$\int \cos 4x dx = \frac{1}{4} \int \cos 4x \, 4dx$$

$$= \frac{1}{4} \int \cos u \, du$$

$$= \frac{1}{4} \sin u + C$$

$$= \frac{1}{4} \sin 4x + C$$

\$300 Answer from Aunty Derivative

$$\int \frac{1}{\sqrt{1-16x^2}} dx = \int \frac{1}{\sqrt{1-(4x)^2}} dx \qquad \text{Let } u = 4x \\ \text{Then } du = 4dx \\ \text{so } \frac{du}{4} = dx \\ \int \frac{1}{\sqrt{1-16x^2}} dx = \int \frac{1}{\sqrt{1-(4x)^2}} dx = \int \frac{1}{\sqrt{1-(u)^2}} \cdot \frac{du}{4} = \frac{1}{4} \int \frac{1}{\sqrt{1-(u)^2}} \cdot du \\ \frac{1}{4} \int \frac{1}{\sqrt{1-u^2}} \cdot du = \frac{1}{4} \sin^{-1}u + C = \frac{1}{4} \sin^{-1}(4x) + C \\ \hline$$

\$400 Question from Aunty Derivative

$$\int (1-t)e^{36t-18t^2} dt$$

$$\int (1-t)e^{36t-18t^{2}}dt \qquad \text{Let } u = 36t-18t^{2} \\ \text{Then } du = (36-36t)dt \\ du = 36(1-t)dt \text{ so } \frac{du}{36} = (1-t)dt \\ \int (1-t)e^{36t-18t^{2}}dt = \int e^{36t-18t^{2}}(1-t)dt = \int e^{u}\left|\frac{du}{36}\right| = \frac{1}{36}\int e^{u}du \\ = \frac{1}{36}e^{u} + C = \frac{1}{36}e^{36t-18t^{2}} + C$$

\$500 Question from Aunty Derivative
Exact value please

$$\int_{0}^{1000} e^{-2x} dx$$

\$500 Answer from Aunty Derivative
Exact value please

$$\int_{0}^{1000} e^{-2x} dx$$

$$\int e^{-2x} dx = -\frac{1}{2} \int e^{-2x} (-2) dx = -\frac{1}{2} e^{-2} + C$$

$$\int_{0}^{1000} e^{-2x} (-2) dx = -\frac{1}{2} e^{-2} \Big|_{0}^{1000} = -\frac{1}{2} e^{-2000} - (-\frac{1}{2} e^{0})$$

$$= -\frac{1}{2} e^{-2000} + \frac{1}{2}$$