What's your Slope?

1. Observe carefully how the graphs of $f(x)$ and $g(x)$ are related, as well as their derivatives.
A. The graph of a discontinuous function $f(x)$ is shown below, along with its tangent line at $(2,1)$. Complete the box with the slope of the tangent line to $f(x)$ at $(2,1)$ and complete the table.

x	$f(x)$	$f^{\prime}(x)$
-2		
0	-1	$1 / 3$
1	0	undefined
2	1	
9		$1 / 12$

B. The graph of a discontinuous function $g(x)$ is shown below, along with its tangent line at $(1,2)$. Complete the box with the slope of the tangent line to $g(x)$ at $(1,2)$ and complete the table. How can part A help you with the last row?

x	$g(x)$	$g^{\prime}(x)$
	-2	
-1	0	3
0	1	0
1	2	
	9	

C. Complete: The graph of f and g are called \qquad of each other. If the point (a, b) is on the graph of f, then the point (\qquad ,) is on the graph of g.

2. What do you notice about any symmetry between the graphs of $f(x)$ and $g(x)$?

What do you notice about any symmetry between the tangent lines at corresponding points?

Section 3.10 - Derivatives of Inverse Functions
Important Ideas:

Check Your Understanding!

1. For $f(x)=3 x+6$, find $\left(f^{-1}\right)^{\prime}(x)$. You do not need to find $f^{-1}(x)$.
2. Let $f(x)=x^{3}+x$. If $g(x)=f^{-1}(x)$ and $g(2)=1$, what is the value of $g^{\prime}(2)$?
3. The table below gives selected values for a differentiable and decreasing function f and its derivative. If $f^{-1}(x)$ is the inverse function of f, what is the value of $\left(f^{-1}\right)^{\prime}(2)$?

x	$f(x)$	$f^{\prime}(x)$
0	49	0
1	2	-8
2	-1	-80

4. Suppose that g is the inverse function of $f(x)=3 x^{5}+6 x^{3}+4$. Find $g^{\prime}(13)$. TIP: Use a table or a graph.
5. Find the equation of the tangent line to the inverse of $f(x)=x^{5}+2 x^{3}+x-4$ at the point $(-4,0)$.
