Thomas the Tank Engine Takes a Trip

Thomas the Tank Engine is $d=f(t)$ miles from his boss Sir Topham Hatt, where t is given in hours. The graph of $d=f(t)$ is given below for $0 \leq t \leq 7$. Sketch a line segment to represent the average rate of change $\frac{\Delta d}{\Delta t}$ of $f(t)$ on the graph of $d=f(t)$ for each interval. Interpret what the average rate of change means to Thomas the Tank Engine.

1. From $t=3$ to $t=7: \Delta d=$ \qquad , $\Delta t=$ \qquad
a. The average rate of change from $t=3$ to $t=7$ is $\frac{\Delta d}{\Delta t}=\square$

b. Interpret the meaning of $\frac{\Delta d}{\Delta t}$ in terms of his trip.
$d(t)$
miles from Topham Hatt

2. From $t=0$ to $t=7: \Delta d=$ \qquad , $\Delta t=$ \qquad
a. The average rate of change from $t=0$ to $t=7$ is $\frac{\Delta d}{\Delta t}=\square$

b. Interpret the meaning of $\frac{\Delta d}{\Delta t}$ in terms of his trip.
$d(t)$
miles from Topham Hatt

3. From $t=3$ to $t=5: \Delta d=$ \qquad , $\Delta t=$ \qquad
a. The average rate of change from $t=3$ to $t=4$ is $\frac{\Delta d}{\Delta t}=\square \square_{\text {Report units of measure }}$
b. Interpret the meaning of $\frac{\Delta d}{\Delta t}$ in terms of his trip.
$d(t)$

4. From $t=3$ to $t=4: \Delta d=$ \qquad , $\Delta t=$ \qquad
a. The average rate of change from $t=3$ to $t=4$ is $\frac{\Delta d}{\Delta t}=\square \square_{\text {Report units of measure }}$
b. Interpret the meaning of $\frac{\Delta d}{\Delta t}$ in terms of his trip.
$d(t)$
miles from Topham Hatt

5. On the interval for $0 \leq t \leq 7$, use the graph to answer the following questions. Enter whole numbers in the blanks.
a. When traveling toward Sir Topham Hatt, Thomas is speediest at time $t=$ \qquad hr where Thomas is at the mile marker \qquad miles.
b. When traveling away from Sir Topham Hatt, Thomas is speediest at time $t=$ \qquad hr where Thomas is at the mile marker \qquad miles.
c. Thomas is traveling the slowest at $t=$ \qquad hr where he is at mile marker(s) \qquad miles.
d. Suppose right before the 7 hour mark a car stalls on the tracks at mile marker 10 when $t=7$. Approximate the speed at the instant Thomas hits the car. \qquad mph We call this speed the instantaneous rate of change or instantaneous velocity at $t=7$.
