The Snappiness of Snapchat: Expressing How Fast It Changes!

"It would take you 10 years to view all the photos shared in the last hour on Snapchat," a business website claims. "By the time you'd viewed those, another 880,000 years' worth of photos would have been shared." How fast are people loading photos to Snapchat?

- 1. The number of photos on Snapchat is always changing.
 - a. What might cause the number of Snapchat users to grow or decline?
 - b. What might cause an individual to post more or fewer photos?
- 2. Let's assume that the number of photos shared by an individual Snapchat user is w and the number of Snapchat users is given by r.
 - a. What does $w \cdot r$ represent in this context?
 - b. What does Δw represent in this context?
 - c. What does Δr represent in this context?
- 3. The diagram below gives a visual of how these variables affect each other.
 - a. Use hashtags (like this:) to shade the region that represents the **current total number of photos** shared on Snapchat.
 - b. Use hashtags (like this:) to shade all the regions that represent the *change* in the **total amount of photos** shared on Snapchat.

c. Write an equation for the overall change in the number of photos shared.

Overall change in photos shared = ____

- 4. Suppose we wanted to know how *fast* people are sharing (the change in photos *per* day, hour, minute, etc.).
 - a. What would we have to do to each of the quantities in part 3c?
 - b. What if we wanted to see how fast people are sharing *right now*?

Important Ideas:

Check Your Understanding 1. Given that $f(x) = 2x^2(x^3 - 3)$, find f'(x) in two different ways.

2. Find
$$\frac{dg}{dt}$$
 using the product rule if $g(t) = \frac{e^t}{t^2}$

3. Find
$$f'(x)$$
 if $f(x) = 4x^3 \ln x$

- 4. If $f(x) = xe^x$, report each. Hint: Look back. Look forward.
 - a. f'(x) =
 - b. f''(x) =
 - c. f'''(x) =
 - d. $f^{(100)}(x) =$
 - e. $f^{(n)}(x) =$