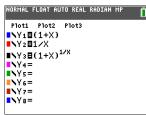
The Derivative of the Natural Logarithm Function y = ln(x)

Complete the steps to show why $\frac{d}{dx} \ln x = \frac{1}{x}$ to earn +1 Rhino Participation Bonus!

1. Fun Fact: The value of $\lim_{Q\to 0} (1+Q)^{\frac{1}{Q}}$ is a famous number. What is the **exact** value of this limit? Fill it in the box below.

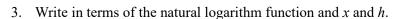
You can explore this limit with a graphing calculator as shown below.



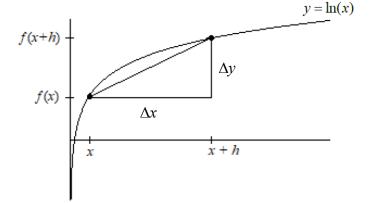
NORMAL FLOAT AUTO REAL RADIAN MP				
Х	Y ₁	Y ₂	Υз	Exact Value
0.1	1.1	10	2.5937	$(1.1)^{10}$
0.01	1.01	100	2.7048	$(1.01)^{100}$
0.001	1.001	1000	2.7169	$(1.001)^{1000}$
0.001	1.0001	10000	2.7181	$(1.0001)^{10000}$
0.0001	1.00001	100000	2.7183	$(1.00001)^{1000000}$

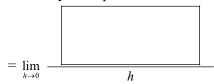
- 2. Recall the following properties of logarithms.
 - **a.** Sum Property: $\ln A + \ln B =$
 - **b**. Difference Property: $\ln A \ln B =$
 - **c**. Power Property: $k \cdot \ln A =$
 - **d.** Can the expression $\ln (A + B)$ be simplified? Circle one: YES NO

If yes, please simplify it below. If not, please leave as is.



$$\frac{d}{dx}\ln x = \lim_{h \to 0} \frac{f(x+h) - f(x)}{x+h-x} = \lim_{h \to 0}$$





5. Use the property that
$$\frac{*}{h} = \frac{1}{h} \cdot *$$
. Follow the remaining steps. Arrows indicate you recopy the previous box.

$$= \lim_{h \to 0} \frac{1}{h} \cdot \ln \left(1 + \frac{1}{h} \right)$$

$$= \lim_{h \to 0} \frac{1}{x} \cdot \lim_{h \to 0} \ln \left(1 + \frac{1}{h} \right)$$

$$= \lim_{h \to 0} \frac{1}{x} \cdot \lim_{h \to 0} \ln \left(1 + \frac{1}{h} \right)$$

$$= \lim_{h \to 0} \frac{1}{x} \cdot \lim_{h \to 0} \ln \left(1 + \frac{1}{h} \right)$$

Divide your expression in the box in #4 by x.

Rewrite
$$\frac{1}{h}$$
 using "1 in"

Write as a product of limits.

6. Let
$$Q = \frac{h}{x}$$
. As $h \to 0$, what happens to Q ? $Q \to \boxed{}$

7. Write the limit in the last line of
$$\#5$$
 all in terms of Q .