The Derivative of the Natural Logarithm Function $y=\ln (x)$

Complete the steps to show why $\frac{d}{d x} \ln x=\frac{1}{x}$ to earn +1 Rhino Participation Bonus!

1. Fun Fact: The value of $\lim _{Q \rightarrow 0}(1+Q)^{\frac{1}{Q}}$ is a famous number. What is the exact value of this limit? Fill it in the box below.

You can explore this limit with a graphing calculator as shown below.

NORMAL FLOAT AUTO REAL RADIAN MP				
	Y_{1}	Y_{2}	Y_{3}	Exact Value
0.1	1.1	10	2.5937	$(1.1)^{10}$
0.01	1.01	100	2.7048	$(1.01)^{100}$
0.001	1.001	1000	2.7169	$(1.001)^{1000}$
0.001	1.0001	10000	2.7181	$(1.0001)^{10000}$
0.0001	1.00001	100000	2.7183	$(1.00001)^{100000}$

Complete: $(1.000 \ldots 0001)^{1}$
2. Recall the following properties of logarithms.
a. Sum Property: $\ln A+\ln B=$ \square
b. Difference Property: $\ln A-\ln B=$ \square
c. Power Property: $k \cdot \ln A=$ \square
d. Can the expression $\ln (\mathrm{A}+\mathrm{B})$ be simplified? Circle one: YES NO

If yes, please simplify it below. If not, please leave as is.
3. Write in terms of the natural logarithm function and x and h.

$$
\frac{d}{d x} \ln x=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{x+h-x}=\lim _{h \rightarrow 0} \square
$$

4. Rewrite your expression in the box in \#3 using the Difference Property.

5. Use the property that $\frac{*}{h}=\frac{1}{h} \cdot *$. Follow the remaining steps. Arrows indicate you recopy the previous box.
$=\lim _{h \rightarrow 0} \frac{1}{h} \cdot \ln (1+\square)$

Rewrite $\frac{1}{h}$ using " 1 in"
Divide your expression in the box in $\# 4$ by x.

Write as a product of limits.
$=\lim _{h \rightarrow 0} \frac{1}{x} \cdot \lim _{h \rightarrow 0} \square$
Use the Power Property.
6. Let $Q=\frac{h}{x}$. As $h \rightarrow 0$, what happens to Q ? $Q \rightarrow$ \square
7. Write the limit in the last line of $\# 5$ all in terms of Q.

Why?

