The Derivative of a Quotient

1. Write $E(x)=\frac{7 \ln x}{x}$ as the quotient of two functions f and g, where $E(x)=\frac{f(x)}{g(x)}$.
a. $f(x)=\square$
$f^{\prime}(x)=\square$
b. $g(x)=\square$

$$
g^{\prime}(x)=\square
$$

2. What is your best guess for the derivative of $E(x)=\frac{7 \ln x}{x} ? \quad E^{\prime}(x)=\square ? ? ?$

3. Go to Y1 on your calculator.

Press MATH 8 for the n Deriv command.

On a TI-83 it would look like:

Enter your guess from \# 2 in Y2. \qquad

TRBLE SETUP
TblStart=1
هTbl=1:
Indpnt:
Auto Ask
Depend:
Ruto Ask

4. Write $E(x)$ as the product of two functions. $E(x)=\frac{7 \ln x}{x}=\square \cdot \square$

Now use the product rule to find $E^{\prime}(x)$. Then simplify your result for $E^{\prime}(x)$ so its denominator is a monomial.
(Rearrange your answer to fit expressions in the boxes.)

5. Can you develop a formula for the derivative of a fractional expression $Q=\frac{u}{v}$ in terms of u, v, u^{\prime}, and v^{\prime} ?

Explore.

Memory Tip for the Quotient Rule: "Heidi comes second."

$$
\frac{d}{d x}\left(\frac{\mathrm{Hi}}{\mathrm{Lo}}\right)=\frac{\text { Lo dee Hi }-\mathrm{Hi} \text { dee Lo }}{\mathrm{LoLo}}
$$

From http://www.foxsports.com/buzzer/story/craziest-moments-in-nfl-history-the-heidi-game-081314

Check Your Understanding

1. $p(t)=\frac{10 t^{2}}{t^{2}+50}$
2. $y(x)=\frac{3 x^{2}+2 \sqrt{x}}{x^{2}}$
3. $y(x)=\frac{3 x^{2}}{4 \ln x}$
4. The table below gives values of f, g, f^{\prime}, and g^{\prime} at selected x-values.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-1	6	5	3	-2
1	3	-3	-1	2
3	1	-2	2	3

Let $h(x)=\frac{f(x)}{g(x)}$. Find $h^{\prime}(-1)$.

