The Derivative of a Quotient

Now use the product rule to find E'(x). Then simplify your result for E'(x) so its denominator is a monomial.

(Rearrange your answer to fit expressions in the boxes.)

5. Can you develop a formula for the derivative of a fractional expression $Q = \frac{u}{v}$ in terms of u, v, u', and v'? Explore.

 Important Ideas:
 Memory Tip for the Quotient Rule: "Heidi comes second."
 $\frac{d}{dx}\left(\frac{\text{Hi}}{\text{Lo}}\right) = \frac{\text{Lo dee Hi} - \text{Lo Lo}}{\text{Lo Lo}}$

 From http://www.foxsports.com/buzzer/story/craziest-moments-in-nfl-history-the-heidi-game-081314

Check Your Understanding

1.
$$p(t) = \frac{10t^2}{t^2 + 50}$$

2.
$$y(x) = \frac{3x^2 + 2\sqrt{x}}{x^2}$$

$$3. \quad y(x) = \frac{3x^2}{4\ln x}$$

4. The table below gives values of f, g, f', and g' at selected x-values.

x	f(x)	f'(x)	<i>g</i> (<i>x</i>)	<i>g</i> ′(<i>x</i>)
-1	6	5	3	-2
1	3	-3	-1	2
3	1	-2	2	3

Let $h(x) = \frac{f(x)}{g(x)}$. Find h'(-1).