1. Assume n represents a positive integer. Find the following nth derivative $\frac{d^{n}}{d x^{n}} e^{n x}$. Show work.
2. A rectangular tank with a square base, an open top, and any volume of $V \mathrm{~cm}^{3}$ is to be constructed of sheet steel. Shown are some possible variations. V represents some fixed constant.

a. Express the surface area S of the box as a function involving x and V, where V is a fixed constant.
b. Use calculus to show that the value of x and h for which the box has minimum surface area $S(x)$ will always have a height h that is half the length of the base x, i.e. the value x which solves S ' $(x)=0$ and the value h for which $x^{2} h=V$ has the property that $h=1 / 2 x$.
