Revenue Rectangles

1. What price, p would result in the following demands? For each q, find the corresponding p. Then find the revenue $R=p q$. Sketch a rectangle that has an area that represents the revenue for each case.
a. The quantity demanded is $q=250$ boots.

This occurs for $p=\$$ \qquad
The revenue is $\$$

q (boots)
b. The quantity demanded is $q=500$ boots.

This occurs for $p=\$$ \qquad

c. The quantity demanded is $q=1000$ boots.

This occurs for $p=\$$ \qquad

d. The quantity demanded is $q=1250$ boots.

This occurs for $p=\$$ \qquad
The revenue is $\$$ \qquad
e. If $q=0$, then $p=\$$ \qquad and $R=\$$ \qquad -
If $q=1500$, then $p=\$$ \qquad and $R=\$$ \qquad .
What is true about rectangles for these cases?

2. Use your answers to part \#1 to complete the table.

Use a table feature of a grapher to produce the table to check. Enter $y 1=1200-0.8 x$ with $\Delta \mathrm{Tbl}=250$.
Enter $y 2=x^{*} y 1$
3. What price p and demand q will maximize revenue?
$q=$ \qquad boots, $p=\$$ \qquad , $R=\$$
Sketch this Revenue Rectangle on one of these graphs above. What do you notice about this special rectangle?

Demand, q, (boots)	Price, p, (dollars)	Revenue (dollars)
0		
250		
500		
1000		
1250		
1500		

