Practice Questions to Check Prerequisite Skills

1. The graph of $y = 0.5x^3$ is shown (dashed), along with the graph of h(x) on the set of axes below.

The graph of h(x) is a translation of $y = 0.5x^3$, which has been shifted both horizontally and vertically. Points *A*, *B*, and *C* on $y = 0.5x^3$ correspond to *A'*, *B'*, and *C'* on h(x), respectively.

- **a.** Describe in words the translation of $y = 0.5x^3$ to h(x). *Example:* a shift left or right *<some specified number of >* units and a shift up or down *<some specified number of >* units.
- **b**. Write the equation of h(x) as a function of *x*.
- **c.** At what value does the graph of h(x) cross the *x*-axis? (This should be consistent with your formula in part **b**.)
- **d**. At what value does the graph of h(x) cross the y-axis? (You can use your formula or a grapher. No work need be shown.)
- 2. The graph of $y = 0.5x^3$ is shown (dashed), along with the graph of g(x) on the set of axes below.
- **a.** Describe in words the translation of
 - $y = 0.5x^3$ to g(x).
- **b**. Write the equation of g(x) as a function of x.
- c. At what value does the graph of g(x) cross the *x*-axis?
- **d**. At what value does the graph of g(x)

cross the y-axis?

PARENT

10

8

+

3. The graph of y = f(x) is shown. The functions shown below are transformations of f(x).

CHILD

Describe each transformation and write a formula for each function in terms of f(x).

4. The graph of y = f(x) is shown. Use the graph of f(x) to write g(x) as a transformation of f(x). Find a formula for g(x) in terms of f(x).

- 5. Which of these is $\ln \sqrt[3]{x^2}$? Circle one. A. $3\ln \sqrt{x}$ B. $3\ln x$ C. $x \ln 3$ D. $\frac{2}{3}\ln x$ E. $\frac{3}{2}\ln x$ F. $3\ln x^2$ G. $2\ln x^3$ H. None of these.
- 6. Solve the equation. $e^x = 17.3$ Report both an exact solution (involving a logarithm) and an approximate solution to 2 decimal places.
- 7. Solve the equations. Report both an exact solution and an approximate solution to 3 decimal places. **a.** $5\ln(3x) = 20$ **b.** $5\log x + 7 = 10$
- **8**. Solve the equations.

a. 4u(u-2) = 0 **b**. $25u^2 = 4$ **c**. $25u^2 = 4u$ **d**. $13x - 4x^2 = 0$ **e**. $13x - 4x^2 = 3$ **f**. $2u^2 = u + 1$

9. Use the diagram to the right to answer the question below. The figure is not drawn to scale.

10 teet

A ramp feet 10 long is leaning against a raised platform which is 2 feet above the ground. What is the distance from the ramp's contact point with the ground and the base of the platform?

A. 8 feet B. $\sqrt{104}$ feet C. $\sqrt{96}$ feet D. 6 feet E. None of these.

- 10. Jonesville and Smithville each have a population of 5000 size at year t = 0. Suppose Jonesville's population grows by 200 people per year. Suppose the population of Smithville grows by 2% per year.
 - **a.** Which is true? (Circle one)
 - A. Both towns are growing exponentially.
 - B. Jonesville is growing linearly and Smithville is growing exponentially.
 - C. Jonesville is growing exponentially and Smithville is growing linearly.
 - D. Both towns are growing linearly.
 - **b.** Find a formula for the population of the town of Jonesville at year t. P =_____
 - c. Find a formula for the population of the town of Smithville at year t. P = _____
- 11. In the year 1900 the population *P* of a town was 200. The town grew by 23% every year.
 - In the year 1900 the population Q of a town was 400 people but it grew by 200 people every year. **a.** Write formulas for P and Q.
 - **b**. Find how many years it will take after 1900 for the population of Q to overtake the population of P. Report your solution to 2 decimal places.
- **12.** The revenue R(x), cost C(x), and profit P(x) for a product are graphed in the figure to the right, where *x* is the quantity produced and sold. Note: P(x) = R(x) C(x)
 - a. Determine the number of items that must be sold to break even, i.e., revenue is equal to costs.The break-even quantity is units sold.
 - **b.** Find the formulas of the three functions.
 - $P(x) = _$
 - $R(x) = _$
 - $\mathbf{C}(x) = _$

- **13**. Use the compound interest formulas $A = P(1 + \frac{r}{n})^{nt}$ and $A = Pe^{rt}$ as appropriate. Suppose that you have \$6000 to invest. Which investment yields the greater return over 13 years: 8.07% compounded **continuously** or 8.1% compounded **monthly**? (Select one)
 - A. Investing \$6000 at 8.07% compounded **continuously** over 13 years yields the greater return.
 - B. Investing \$6000 at 8.1% compounded **monthly** over 13 years yields the greater return.
 - C. Both investments yield the same return.
- 14. Use the compound interest formulas $A = P(1 + \frac{r}{n})^{nt}$ and $A = Pe^{rt}$ as appropriate.

Suppose that you have \$9000 to invest. Which investment yields the greater return over 19 years: 7.88% compounded **continuously** or 7.9% compounded **monthly**? (Select one)

- A. Investing \$9000 at 7.88% compounded continuously over 19 years yields the greater return.
- B. Investing \$9000 at 7.9% compounded **monthly** over 19 years yields the greater return.
- C. Both investments yield the same return.

- **15.** Suppose the point P(3,-2) is a point on the graph of y = f(x)
 - **a.** Suppose f(x) is even:
 - i. Report the coordinates of another point *Q*, which corresponds to *P*. (_____, ____)
 - ii. Plot the point Q on the grid provided.
 - **b.** Suppose f(x) is **odd**:
 - i. Report the coordinates of another point *Q*, which corresponds to *P*. (____, ___)
 - ii. Plot the point Q on the grid provided.

16. a. Assume the table represents a linear function.i. Complete the box in the first row and the last row.

x	у
0	
1	125
2	85
3	45
4	

ii. Report the equation of the line in slope-intercept form:

- **b**. Assume the table represents an **exponential** function.
 - i. Complete the box in the first row and the last row.

x	у
0	
1	128
2	32
3	8
4	

ii. If we report the equation of the exponential function in the form $y = ab^x$, then we have

