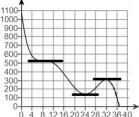
KEY to QUIZ 11 (HW 28-30)

1. a. Since
$$f'(x) = 4e^{-5x} - 7x$$
 we have $f'(x) = -20e^{-5x} - 7$ so $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \begin{vmatrix} x_n & -\frac{4e^{-5x_n} - 7x_n}{-20e^{-5x_n} - 7} \end{vmatrix}$
NORMAL FLOAT AUTO REAL RADIAN MP
Plot1 Plot2 Plot3
NY1E4e^{-5x} - 7X
NY2E-20e^{-5x} - 7
NORMAL FLOAT AUTO REAL RADIAN MP
NORMAL FLOAT AUTO REAL RADIAN
NORMAL FLOAT AUTO REAL RADIAN MP
NORMAL FLOAT AUTO REAL RADIAN MP
NORMAL FLOAT AUTO REAL RADIAN
NORMAL FLOAT
NORMAL FLO

- **2. a.** x = 8, 24, 32.
 - **b.** There are horizontal tangents at x = 8, 24, 32 so the tangent line approximating f(x) will never touch the x-axis to produce the value for the next iteration. You could also just point out that at these values f'(x) = 0.
- **3.** Using slope triangles,

a.
$$f'(x) = \frac{RISE}{RUN} = \frac{10.8}{2} = \boxed{5.4}$$
 b. $g'(x) = \frac{RISE}{RUN} = \frac{6}{2} = \boxed{3}$
c. $\lim_{x \to -2} \frac{f(x)}{g(x)} = \frac{0}{0}$ so $\lim_{x \to -2} \frac{f(x)}{g(x)} = \lim_{x \to -2} \frac{f'(x)}{g'(x)} = \frac{5.4}{3} = \boxed{1.8}$
d. $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\infty}{\infty}$ so $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \frac{5.4}{3} = \boxed{1.8}$



- You could verify this using formulas since f(x) = 5.4(x+2) and g(x) = 3(x+2) so $\frac{f(x)}{g(x)} = \frac{5.4(x+2)}{3(x+2)}$.
- **a.** The exponential function $f(x) = e^{0.0001x}$ will eventually outpace the power function $g(x) = x^{10000}$. 4. We can apply L'Hôpital's Rule multiple times to show $\lim_{x \to \infty} \frac{e^{0.0001x}}{x^{10000}} = \infty$
 - **b.** The function $f(x) = e^{0.0001x}$ will be eventually be outpaced by $h(x) = x^{0.0001x}$ for x > e since powers are the same.
 - 5. a. We have the form 0/0 so we can apply L'Hôpital's Rule:

$$\lim_{x \to 0} \frac{\sin 4x}{5x} \stackrel{LH}{=} \lim_{x \to 0} \frac{4\cos 4x}{5} = \frac{4\cos 0}{5} = \frac{4\cdot 1}{5} = \boxed{\frac{4}{5}} \text{ or } \boxed{0.8}.$$

OR
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \text{ so } \lim_{x \to 0} \frac{\sin 4x}{5x} = \lim_{x \to 0} \frac{\sin 4x}{5x} \cdot \frac{\frac{4}{5}}{\frac{4}{5}} = \lim_{x \to 0} \frac{\sin 4x}{4x} \cdot \frac{\frac{4}{5}}{1} = \boxed{\frac{4}{5}} \text{ or } \boxed{0.8}.$$

b. We have the form ∞/∞ so we can apply L'Hôpital's Rule:

$$\lim_{x \to \infty} \frac{e^{\frac{19}{x}} - 1}{\frac{19}{x}} \stackrel{LH}{=} \lim_{x \to \infty} \frac{e^{\frac{19}{x}} \cdot \frac{d}{dx}}{\frac{d}{dx}} = \lim_{x \to \infty} e^{\frac{19}{x}} = e^{0} = \boxed{1}$$

c. We have the form 0/0 (since $e^0 - 0 - 1 = 1 - 1 = 0$) so we can apply L'Hôpital's Rule. $\lim_{x \to 0} \frac{e^x - \sin x - 1}{7x^2 + x^3} = \lim_{x \to 0} \frac{e^x - \cos x}{14x + 3x^2}$

$$\lim_{x \to 0} \frac{e^{x} - \sin x - 1}{7x^{2} + x^{3}} = \lim_{x \to 0} \frac{e^{x} - c}{14x + 3}$$
LH
LH

 $\lim_{x \to 0} \frac{e^{-1} \cos x}{14x + 3x^2}$ is of the form 0/0 (since $e^0 - \cos 0 = 1 - 1 = 0$) so we can apply L'Hôpital's Rule again.

$$\lim_{x \to 0} \frac{e^x - \cos x}{14x + 3x^2} = \lim_{x \to 0} \frac{e^x + \sin x}{14 + 6x}$$
. This is not in indeterminate form so we can't apply L'Hôpital's Rule
Using direct substitution,
$$\lim_{x \to 0} \frac{e^x + \sin x}{14 + 6x} = \frac{e^0 + 0}{14 + 0} = \boxed{\frac{1}{14}}$$

d. We do not have the form 0/0 so we cannot apply L'Hôpital's Rule. But direct substitution works.

$$\lim_{x \to 0} \frac{e^x + 4}{17x + 59} = \frac{e^0 + 4}{0 + 59} = \frac{1 + 4}{59} = \frac{5}{59}$$

e. Rewrite using the Bob Barker Property since $\ln(1+2x)^{1/x} = \frac{1}{x} \cdot \ln(1+2x) = \frac{\ln(1+2x)}{x}$

 $\lim_{x \to 0} \ln (1+2x)^{1/x} = \lim_{x \to 0} \frac{\ln (1+2x)}{x} \text{ is of the form } 0/0 \text{ (since } \ln 1 = 0\text{) so we can apply L'Hôpital's Rule:}$ $\lim_{x \to 0} \frac{\ln (1+2x)}{x} = \lim_{x \to 0} \frac{\frac{1}{1+2x} \cdot \frac{d}{dx} (1+2x)}{1} = \lim_{x \to 0} \frac{1}{1+2x} \cdot 2 = \frac{1}{1+0} \cdot 2 = \boxed{2}$

f. Let $y = (1+2x)^{1/x}$. From part **e**, we have $\lim_{x \to 0} \ln y = 2$ Therefore $\lim_{x \to 0} y = \lim_{x \to 0} e^{\ln y} = e^{\lim_{x \to 0} \ln y} = \boxed{e^2}$

BONUS

Since
$$-1 < \sin x < 1$$
, we have that $\frac{e^x - 1}{7x^2 + x^3} < \frac{e^x - \sin x}{7x^2 + x^3}$

Since e^x dominates any polynomial, $\lim_{x \to \infty} \frac{e^x - 1}{7x^2 + x^3} = \infty$

Then
$$\lim_{x \to \infty} \frac{e^x - \sin x}{7x^2 + x^3} = \boxed{\infty}$$