
1. a.  Since 5'( ) 4 7xf x e x−= − we have 5'( ) 20 7xf x e−= − −  so 
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2. a.   x = 8, 24, 32. 

b.  There are horizontal tangents at x = 8, 24, 32 so the tangent line approximating 
   f(x) will never touch the x-axis to produce the value for the next iteration. 
   You could also just point out that at these values '( )f x = 0. 

3. Using slope triangles,  
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You could verify this using formulas since ( ) 5.4( 2)f x x= +  and ( ) 3( 2)g x x= + so 
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4.   a. The exponential function 0.0001( ) xf x e=  will eventually outpace the power function 10000( )g x x= .  

     We can apply L’Hôpital’s Rule multiple times to show  
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  b.  The function 0.0001( ) xf x e=  will be eventually be outpaced by 0.0001( ) xh x x=  for x > e since powers are the same. 
 

5. a. We have the form 0/0 so we can apply L’Hôpital’s Rule: 
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b. We have the form ∞/∞ so we can apply L’Hôpital’s Rule: 
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c.  We have the form 0/0 (since e0 – 0  – 1 = 1 – 1 = 0) so we can apply L’Hôpital’s Rule.  

        =      

 
    is of the form 0/0 (since e0 – cos 0 = 1 – 1 = 0) so we can apply L’Hôpital’s Rule again. 

 

       =    .  This is not in indeterminate form so we can’t apply L’Hôpital’s Rule. 

                                                                  Using direct substitution,  =    
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d.  We do not have the form 0/0 so we cannot apply L’Hôpital’s Rule. But direct substitution works. 
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e. Rewrite using the Bob Barker Property since ln(1+2x)1/x =  
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f.  Let y = (1+2x)1/x . From part e, we have                        Therefore 

 
 

 
 
BONUS  

    Since  −1 < sin x < 1, we have that  < . 

 

   Since ex dominates any polynomial,  = ∞ 
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