London Eye

A car on the London Eye has vertical height $h(\theta)$, dimension meters. It rotates counterclockwise. One revolution takes a half hour.

- 1. Construct a graph of $h(\theta)$ for one revolution where at $\theta = 0$ the car is at the **3 o'clock position**. Use radians. Label both axes with numbers.
- 2. Construct a formula for $h(\theta)$. $h(\theta) =$ _____.
- 3. Complete the blanks. Then write θ (radians) as a function of *t* (hours), where at t = 0 the car is at the **3 o'clock position**.

Number of	t	θ
revolutions	(hr)	(radians)
1		
1/2		
1⁄4		
	0	
	1	
	t	

- 4. Complete: $\theta(t) =$ _____.
- 5. Complete: $d\theta/dt =$ _____. Report the units: _____. This quantity is called the ______ velocity.
- 6. Use substitution to construct a formula for h(t). h(t) =_______Again assume at t = 0 the car is at the **3 o'clock position**.
- 7. Complete:
 - a. dh/dt =

c. The vertical height h of the car changes the *slowest* at what clock position(s)? 3 o'clock 12 o'clock 9 o'clock 6 o'clock

b. The vertical height *h* of the car changes the *fastest* at what clock position(s)? 3 o'clock 12 o'clock 9 o'clock 6 o'clock