
Limit of a Function at a Value (Briggs, Section 2.2) and Continuity (Briggs, Section 2.6)

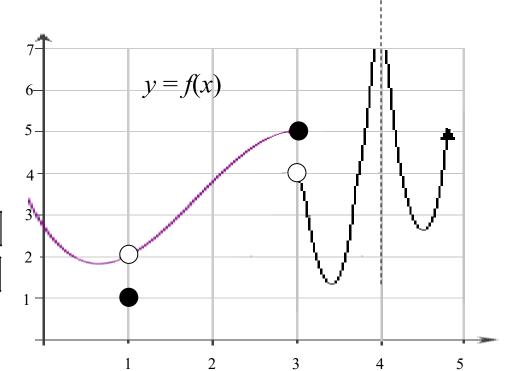
We write $\lim_{x \to c} f(x) = L$ to indicate "As $x \to c$, then $f(x) \to L$ "

If $\lim_{x\to c} f(x)$ exists and equals L, then we must have $\lim_{x\to c^-} f(x) = L$ and $\lim_{x\to c^+} f(x) = L$ (from both sides)

For the graph of f(x) shown, report the following, or, it does not exist, write DNE.

1. a. $\lim_{x \to 1^{-}} f(x) =$

$$\lim_{x\to 1} f(x) = \boxed{}$$


$$f(1) = \boxed{}$$

b. $\lim_{x \to 3^{-}} f(x) = \boxed{}$

$$\lim_{x\to 3^+} f(x) = \boxed{}$$

$$\lim_{x\to 3} f(x) = \boxed{}$$

$$f(3) = \boxed{}$$

b. $\lim_{x \to 4^{-}} f(x) = \boxed{}$

$$\lim_{x\to 4} f(x) = \boxed{}$$

$$f(4) = \boxed{}$$

- **2.** A function f(x) is continuous at x = c if these three conditions are met.
 - 1. f(c) is defined.
 - 2. $\lim_{x \to c} f(x)$ exists.
 - $3. \lim_{x \to c} f(x) = f(c)$

For which values of x is the function <u>discontinuous</u>? x =