We write $\lim _{x \rightarrow c} f(x)=L$ to indicate "As $x \rightarrow c$, then $f(x) \rightarrow L^{\prime \prime}$
If $\lim _{x \rightarrow c} f(x)$ exists and equals L, then we must have $\lim _{x \rightarrow c^{-}} f(x)=L$ and $\lim _{x \rightarrow c^{+}} f(x)=L$ (from both sides)
For the graph of $f(x)$ shown, report the following, or, it does not exist, write DNE.

1. a. $\lim _{x \rightarrow 1^{-}} f(x)=\square$

$$
\lim _{x \rightarrow 1^{+}} f(x)=\square
$$

$$
\lim _{x \rightarrow 1} f(x)=\square
$$

$$
f(1)=\square
$$

b. $\lim _{x \rightarrow 3^{-}} f(x)=\square$

$\lim _{x \rightarrow 3} f(x)=\square$
$f(3)=\square$

b. $\lim _{x \rightarrow 4^{-}} f(x)=\square$
$\lim _{x \rightarrow 4^{+}} f(x)=\square$
$\lim _{x \rightarrow 4} f(x)=\square$
$f(4)=\square$
2. A function $f(x)$ is continuous at $x=c$ if these three conditions are met.

1. $f(c)$ is defined.
2. $\lim _{x \rightarrow c} f(x)$ exists.
3. $\lim _{x \rightarrow c} f(x)=f(c)$

For which values of x is the function discontinuous? $x=$ \qquad

