- 2. Consider the region enclosed between the x-axis and the curve $y = e^x$.
 - a. Use a *left Riemann sum* approximation with 4 equal subintervals to approximate the area of the region between x = -1 and x = 3. Report to 3 decimal places.

b. Use a *right Riemann sum* approximation with 4 equal subintervals to approximate the same region. Report to 3 decimal places.

c. Use a *midpoint Riemann sum* approximation with 4 equal subintervals to approximate the same region. Report to 3 decimal places.

- 3. The rate at which water flows out of a pipe in gallons per hour is given by R(t). Selected values of R(t) are shown in the table below.
 - a. Use a right Riemann sum approximation with 4 equal subintervals to approximate the area underneath R(t) from t=0 to t=24. Show your calculations.

Area=(10.8)(6) +(11.4)(6) +(10.7)(6) +(9.6) = 6 (10.8+11.4+10.7+9.6))6 <i>t</i> (hours)	R(t) (gallons per hour)
11.4 = 6.42.5 = (255)	3	9.6
10.8	9	10.8 11.2 11.4
9.6 (10.01) (10.01) (10.016)	15 18	11.3
(c) (c) (a, b) (e) (a, b) (e)	21 24	10.2 9.6

b. What does this area represent?

since we have R(t) in gallons and At in hours

the area is in gallons. hr = gallons,

which gives the volume of water, 255 gallons in Iday.

