3.8 Implicit Differentiation (as opposed to Explicit Differentiation)

So far, we have found tangent lines for all kinds of functions: polynomials, exponentials, logarithmic, and trig functions. What other kinds of graphs might we be able to find tangent lines for?

1. Write the equation of the circle given.

- 2. What is the slope of the tangent line to the circle at x = 0? How do you know?
- 3. What is the slope of the tangent lines at x = 3? Use the grid to help.
- 4. When we do the same thing to both sides of an equation, the two sides remain equivalent. Let $y = 3x^2$.
 - a. The left hand side, y, represents a function.Take the derivative of both sides of the equation with respect to x.
 - b. $\frac{dy}{dx}$ or y'represents the derivative of the function y with respect to x.
- 5. We can apply this thinking to our tangent line problem. Let's take the derivative of both sides of the circle equation, $x^2 + y^2 = 25$.
 - a. We have $\frac{d}{dx}(x^2) =$ ____. We have $\frac{d}{dx}(25) =$ ____.
 - b. Even though y is not by itself, it still represents a function of x. Why is y^2 a composite function?
 - c. Use the chain rule to find $\frac{d}{dx}(y^2)$. $\frac{d}{dx}(y^2) =$ _____
- 6. Give an equation for the slope of the tangent line at *any* point on this circle. Does this agree with your answer for questions 2 and 3? What is the slope when y = 0?

Important Ideas:

Check Your Understanding!

- 1. Find y' for $\frac{x}{y^3} = 1$ by first solving for y. Then find y' using implicit differentiation. Are the answers the same?
- 2. Find y' for $2y^3 + 4x^2 y = x^6$
- 3. Write the equation of the tangent line to $x^4 + y^2 = 3$ at $(1, -\sqrt{2})$
- 4. (Multiple Choice) If $y = \ln(x^2 + y^2)$, then the value of $\frac{dy}{dx}$ at the point (1,0) is A. 0 B. -1 C. 1 D. 2 E. Undefined
- 5. Calculate y'' for $x^2 + 4y^2 = 1$ using implicit differentiation. Simplify.