3.10 - I Get By With the Help of My Friends

1. Let $y = \tan x$.

We develop the derivatives of inverses of trigonometric functions with the help of two famous amigos, SOHCAHTOA and Pythagoras. It's a process we will use later in MA 16600. Remember $y = \tan^{-1} x$ means tan y = x and, for values in their domain and range^{*}, tan $(\tan^{-1} x) = x$ and $\tan^{-1} (\tan x) = x$. Similar relationships hold for the other five trig functions. *This contingency clause will keep the lawyers at bay.

- a. To find the inverse of this function, switch x and y.
- b. Differentiate both sides of this inverse equation and solve for $\frac{dy}{dx}$.
- c. Recall that the trig functions represent ratios of sides in right triangles. In the triangle $\tan y = x$. What is the third side in this triangle?
- d. Use the triangle ratios to find $\cos y$ and $\sec y$.
- e. Write $\frac{dy}{dx}$ only in terms of x using substitutions from part (d).
- 2. Let $y = \sin x$.
 - a. What's the first step to finding the inverse of this function?
 - b. Differentiate both sides of this inverse equation and solve for $\frac{dy}{dy}$.
 - c. In the triangle below, $\sin y = x$. Fill in the boxes with x, 1, and something else. What is $\cos y$?
 - d. Write $\frac{dy}{dx}$ only in terms of x using what you learned in part (c).
- 3. Let $y = \cos x$.
 - a. Write the inverse equation, differentiate both sides, and solve for $\frac{dy}{dy}$.
 - b. In the triangle below, $\cos y = x$. Label the sides of the triangle. What is $\sin y$?
 - c. Write $\frac{dy}{dx}$ only in terms of x using what you learned in part (b).

Important Ideas:

Check Your Understanding! 1. Let $y = \sin^{-1}(3x)$. Find y'.

2. For
$$y = \tan^{-1}(4x^2)$$
, find $\frac{dy}{dx}$.

- 3. If $\arcsin x = \ln y$, find $\frac{dy}{dx}$.
- 4. For $y = \arccos(e^{7x})$, find y'.
- 5. Let $g(x) = \operatorname{arccot} x$. Find g'(2).