The function $f(x)=3 x^{\ln x}$ and its tangent line at $x=e$ is shown. Each tick mark on the graph is in steps of e. The y-intercept of the tangent line is $(0,-3 e)$.
a. Use the formula to find the exact value of $f(e)$.
b. Use the grid to find $f^{\prime}(e)$.
c. Find the derivative of $y=3 x^{\ln x}$ using logarithmic differentiation.
d. The minimum of the function $f(x)$ occurs when the graph of $f(x)$ has a horizontal tangent line,
 i.e., when the derivative $\frac{d y}{d x}=0$.

Use your formula for $\frac{d y}{d x}$ to find the value of x for which $\frac{d y}{d x}=0$.
e. Find the equations of any horizontal tangent lines for $y=3 x^{\ln x}$.
a. Use the formula to find the exact value of $f(e)$.

$$
f(e)=3 e^{\ln e}=3 e^{1}=3 e \text { This is confirmed by the graph. }
$$

b. Use the grid to find $f^{\prime}(e)$.

Using the grid and the slope triangle, the slope of the tangent line shown is $\frac{6 e}{e}=6$

c. Find the derivative of $y=3 x^{\ln x}$ using logarithmic differentiation.

1. Take natural logarithms of both sides

$$
\ln (y)=\ln \left(3 x^{\ln x}\right)
$$

2. Use properties of logarithms to write as a product

$$
\begin{gathered}
\ln (y)=\ln \left(3 x^{\ln x}\right) \\
\ln (y)=\ln (3)+\ln x^{\ln x} \\
\ln (y)=\ln (3)+(\ln x)(\ln x) \\
\ln (y)=\ln (3)+(\ln x)^{2}
\end{gathered}
$$

3. Differentiate both sides implicitly. Use the power rule and the chain rule.

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} x} \ln y=\frac{\mathrm{d}}{\mathrm{~d} x} \ln (3)+\frac{\mathrm{d}}{\mathrm{~d} x}(\ln x)^{2} \\
\frac{1}{y} \frac{d y}{d x}=0+2 \ln (x) \frac{\mathrm{d}}{\mathrm{~d} x} \ln (x) \\
\frac{1}{y} \frac{d y}{d x}=2 \ln x \cdot \frac{1}{x} \\
\frac{1}{y} \frac{d y}{d x}=\frac{2 \ln x}{x}
\end{gathered}
$$

4. Solve for $\frac{d y}{d x}$. Replace y with $3 x^{\ln x}$.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{2 \ln x}{x} \cdot y \\
\frac{d y}{d x}=\frac{2 \ln x}{x} \cdot 3 x^{\ln x} \\
\frac{d y}{d x}=\frac{6 x^{\ln x} \ln x}{x}
\end{gathered}
$$

Check with part b:

$$
f^{\prime}(e)=\left.\frac{d y}{d x}\right|_{\substack{x=e \\ y=3 e}}=\frac{2 \ln x}{x} \cdot y=\frac{2 \ln e}{e} \cdot 3 e=6
$$

d. The minimum of the function $f(x)$ occurs when the graph of $f(x)$ has a horizontal tangent line, i.e., when the derivative $\frac{d y}{d x}=0$.
Use your formula for $\frac{d y}{d x}$ to find the value of x for which $\frac{d y}{d x}=0$.

$$
\begin{aligned}
& \text { Set } \frac{d y}{d x}=\frac{2 \ln x}{x} \cdot 3 x^{\ln x}=0 \\
& \frac{2 \ln x}{x} \cdot 3 x^{\ln x}=0 \\
& \ln x=0 \\
& e^{\ln x}=e^{0} \\
& x=e^{0}=1
\end{aligned}
$$

We could also set $y=3 x^{\ln x}=0$ and solve but since $\ln x$ is defined only for $x>0$, the function $y=3 x^{\ln x}$ is always positive and undefined at $x=0$.
As $x \rightarrow 0^{+}$we have $y=3 x^{\ln x} \rightarrow \infty$ as shown on the graph.
Therefore the minimum of the function $y=3 x^{\ln x}$ occurs at $x=1$.

e. Find the equation of the horizontal tangent line at the minimum of the function. Substitute $x=1$ in the formula.

When $x=1$, we have $y=3 x^{\ln x}=3 \cdot 1^{\ln 1}=3 \cdot 1^{0}=3$.
Since 3 is slightly larger than $e \approx 2.718$, this matches the graph

The equation of the horizontal tangent line is $y=3$.

