Find \boldsymbol{f}. Find \boldsymbol{a}. Find $f^{\prime}(\boldsymbol{a})$ with Algebraic Manipulation. Interpret $f^{\prime}(a)$

Limits of different quotients follow. Each of these is f^{\prime} for some function f and some value a.
Report $f^{\prime}(a)$, the function f, the value a, and interpret $f^{\prime}(a)$. Use algebraic manipulation to find the limit. TIPS: $A^{2}-B^{2}=(A+B)(A-B)$.

Break fractions into multiplicative factors: $\frac{A}{B \cdot C}=\frac{A \cdot 1}{B \cdot C}=\frac{A}{B} \cdot \frac{1}{C}=\frac{A}{B C}$ and $\frac{A \cdot \frac{1}{c}}{B}=\frac{A}{B} \cdot \frac{\frac{1}{c}}{1}=\frac{A}{B} \cdot \frac{1}{c}=\frac{A}{B \cdot c}$
Bring the number 1 in :

$$
\frac{A}{B \cdot \frac{1}{c}}=\frac{A}{B \cdot \frac{1}{c}} \cdot 1=\frac{A}{B \cdot \frac{1}{c}} \cdot \frac{c}{c}
$$

Take the number 1 out:

$$
=\frac{A}{B \cdot \frac{1}{c}} \cdot \frac{c}{c}=\frac{A \cdot c}{B \cdot \frac{1}{c} \cdot c}=\frac{A \cdot c}{B \cdot \frac{c}{c}}=\frac{A \cdot c}{B \cdot 1}=\frac{A \cdot c}{B}
$$

1. $\lim _{x \rightarrow 5} \frac{4 x-20}{x-5}=$

$$
f(x)=
$$

\qquad $a=$ \qquad
2. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\square$
$f(x)=$ \qquad $a=$ \qquad
3. $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\square$ \qquad $a=$ \qquad
4. $\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{x-2}=\square$

$$
f(x)=
$$

\qquad $a=$ \qquad
5. $\lim _{x \rightarrow 1} \frac{\sqrt{3 x+1}-2}{x-1}=\square f(x)=$ \qquad $a=$ \qquad

