Exponentials and Logarithms to the base \boldsymbol{b}

+2 Rhino Participation Bonus Due Tuesday, 2/27
Name \qquad

1. Suppose you forget the rule for differentiating the function for $y=b^{x}$ but you remember $\frac{d}{d x} e^{k x}=k e^{k x}$ and the inverse property $e^{\ln w}=w$ and the Bob Barker property. Write b^{x} as a power of e.

a. $\quad b^{x}=e^{\ln b^{x}}$

Use the Bob Barker property to complete the box.
b. Differentiate with respect to x.

$$
\frac{d}{d x} b^{x}=\frac{d}{d x} e^{\square \cdot x}=\square
$$

Use this differentiation rule.
c. Replace any expression involving e raised to a power with an equivalent expression involving b. (Use part la)

$$
\frac{d}{d x} b^{x}=\square
$$

Involves b, x, and other stuff but not e and not y.
2. Suppose you forget the rule for differentiating the function for $y=\log _{b} x$ but you remember $\frac{d}{d x} \ln u=\frac{1}{u} \cdot \frac{d u}{d x}$ and the inverse property $b^{\log _{b} w}=w$. In addition, you have what you did in \#1 and know implicit differentiation.
a. Use the inverse property to write this in exponential form without logarithms. Complete the box.

$$
\begin{aligned}
y & =\log _{b} x \\
b^{y} & =b^{\log _{b} x} \\
b^{y} & =\square
\end{aligned}
$$

b. Differentiate with respect to x. Use the chain rule. Remember y is a function of x. Use the rule in ic.

$$
\frac{d}{d x} b^{y}=\frac{d}{d x} \square
$$

c. Solve for $\frac{d y}{d x}$. Replace any expression involving b^{y} with an equivalent expression. (Use part Ra)

$$
\frac{d y}{d x}=\square
$$

