Does "One Out" Always Occur

When Finding the Derivative of a Polynomial or Rational Function?
Due Thursday, February 1 at the start of class for +1 Rhino Bonus Participation Point.

1. When finding the limit $f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ using algebraic techniques, it would be convenient if another function, $g(x)$ existed with the property below:
$f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{n(x)}{(x-a)}=\lim _{x \rightarrow a} \frac{g(x)(x-a)}{(x-a)}$,
where both the numerator $n(x)$ and the function $g(x)$ are continuous at $x=a$.
a. Suppose $f(x)$ is any polynomial function.
i. Explain why $(x-a)$ is a factor of $n(x)=f(x)-f(a)$,
i.e., there exists $g(x)$ such that $n(x)=f(x)-f(a)=g(x)(x-a)$.

Hint: Appeal to the Factor Theorem (perhaps worth looking up on Wikipedia).
$(+0.1)$
ii. Report the value of $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ algebraically using Ghostbuster techniques and part ai.
(+0.8)
b. Suppose $w(x)$ is any rational function $w(x)=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are both polynomials.

Assume $w(x)$ is continuous at $x=a$. It would be convenient if we could use "One Out" to find the following limit algebraically.
$w^{\prime}(a)=\lim _{x \rightarrow a} \frac{w(x)-w(a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{p(x)}{q(x)}-\frac{p(a)}{q(a)}}{x-a}$
Multiply numerator and denominator $\frac{\frac{p(x)}{q(x)}-\frac{p(a)}{q(a)}}{x-a}$ by $\frac{q(x) q(a)}{q(x) q(a)}$ and simplify so that your numerator
is a polynomial function. (We can do this since $q(x)$ is continuous at $x=a$.) Then apply the factor theorem as done in part a to show we can use "One Out". Then report $w^{\prime}(a)$. Show work below. Use the back if necessary.

