Derivatives of Exponential Functions

Each of these limits is f' for some function f of h and some value a. Report f. Report a. Report the value of f'(a). Use the TANGENT feature of a grapher. If f'(a) is undefined, write DNE.

$$\lim_{h \to 0} \frac{e^{h} - 1}{h} = \underline{\qquad}, \quad f(h) = \underline{\qquad}; a = \underline{\qquad}$$
$$\lim_{h \to 0} \frac{e^{kh} - 1}{h} = \underline{\qquad}, \quad f(h) = \underline{\qquad}; a = \underline{\qquad}$$

The derivative of $y = e^{kx}$ is proportional to its own derivative with constant of proportionality equal to _____, i.e. if $y = e^{kx}$, y' =

2. Use the previous result to show the derivative of $y = b^x$ is proportional to its own derivative. Hint: Set $b = e^k$. What is the constant of proportionality?

The derivative of $y = b^x$ is proportional to its own derivative with a constant of proportionality of _____, i.e. if $y = b^x$, y' =